Abstract

Active polarization imagers using liquid crystal variable retarders (LCVR) usually operate at one given wavelength for the sake of polarimetric accuracy. However, this often requires to use narrowband filters which reduces the amount of light entering the system and thus the signal-to-noise ratio. For applications where good target/background discriminability (contrast) is required rather than polarimetric accuracy, this may not be the best choice. In this Article, we address contrast optimization in the case of broadband active polarimetric imaging for target detection applications. Through numerical and experimental studies, we show that broadening the spectrum of the light entering the system can increase the contrast between two regions of a scene. Furthermore, we show that this contrast can be further increased by taking into account the spectral dependence of the scene and of the polarimetric properties of the imaging system in the optimization of the measurement procedure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Active polarimetric imager with near infrared laser illumination for adaptive contrast optimization

Nicolas Vannier, François Goudail, Corentin Plassart, Matthieu Boffety, Patrick Feneyrou, Luc Leviandier, Frédéric Galland, and Nicolas Bertaux
Appl. Opt. 54(25) 7622-7631 (2015)

Effect of imaging geometry and noise model on polarimetric contrast optimization

Jun Dai, Matthieu Boffety, and François Goudail
Appl. Opt. 58(8) 2100-2111 (2019)

Polarimetric target detection under uneven illumination

Bingjing Huang, Tiegen Liu, Jiahui Han, and Haofeng Hu
Opt. Express 23(18) 23603-23612 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
    [Crossref] [PubMed]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [Crossref] [PubMed]
  3. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
    [Crossref] [PubMed]
  4. M. Richert, X. Orlik, and A. De Martino, “Adapted polarization state contrast image,” Opt. Express 17, 14199–14210 (2009).
    [Crossref] [PubMed]
  5. M. Felton, K. P. Gurton, J. L. Pezzaniti, D. B. Chenault, and L. E. Roth, “Measured comparison of the crossover periods for mid- and long-wave ir (mwir and lwir) polarimetric and conventional thermal imagery,” Opt. Express 18, 15704–15713 (2010).
    [Crossref] [PubMed]
  6. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A.-D. Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
    [Crossref] [PubMed]
  7. J. Fade, S. Panigrahi, A. Carré, L. Frein, C. Hamel, F. Bretenaker, H. Ramachandran, and M. Alouini, “Long-range polarimetric imaging through fog,” Appl. Opt. 53, 3854–3865 (2014).
    [Crossref] [PubMed]
  8. N. Vannier, F. Goudail, C. Plassart, M. Boffety, P. Feneyrou, L. Leviandier, F. Galland, and N. Bertaux, “Active polarimetric imager with near infrared laser illumination for adaptive contrast optimization,” Appl. Opt. 54, 7622–7631 (2015).
    [Crossref] [PubMed]
  9. S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
    [Crossref]
  10. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders, ” Appl. Opt. 45, 5470–5478 (2006).
    [Crossref] [PubMed]
  11. Y. Zhang, H. Zhao, and N. Li, “Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders,” Appl. Opt. 52, 1284–1292 (2013).
    [Crossref] [PubMed]
  12. R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Micros. 180, 140–147 (1995).
    [Crossref]
  13. G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51, 5302–5309 (2012).
    [Crossref] [PubMed]
  14. M. Boffety, H. Hu, and F. Goudail, “Contrast optimization in broadband passive polarimetric imaging,” Opt. Lett. 39, 6759–6762 (2014).
    [Crossref] [PubMed]
  15. A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
    [Crossref]
  16. K. M. Twietmeyer and R. Chipman, “Optimization of mueller polarimeters in the presence of error sources,” Opt. Express 16, 11589–11603 (2008).
    [Crossref] [PubMed]
  17. F. Goudail and A. Bénière, “Optimization of the contrast in polarimetric scalar images,” Opt. Lett. 34, 1471–1473 (2009).
    [Crossref] [PubMed]
  18. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
    [Crossref]
  19. M. J. Abuleil and I. Abdulhalim, “Birefringence measurement using rotating analyzer approach and quadrature cross points,” Appl. Opt. 10, 2097–2104 (2014).
    [Crossref]
  20. M. Dubreuil, S. Rivet, B. Le Jeune, and J. Cariou, “Snapshot mueller matrix polarimeter by wavelength polarization coding,” Opt. Express 15, 13660–13668 (2007).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

2012 (1)

2010 (1)

2009 (2)

2008 (1)

2007 (1)

2006 (3)

2005 (1)

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

2004 (1)

A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
[Crossref]

2002 (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

1995 (1)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Micros. 180, 140–147 (1995).
[Crossref]

Abdulhalim, I.

Abuleil, M. J.

Alouini, M.

Anna, G.

Antonelli, M.-R.

Antonucci, E.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Benali, A.

Bénière, A.

Bertaux, N.

Boffety, M.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
[Crossref]

Bretenaker, F.

Capobianco, G.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Cariou, J.

Carré, A.

Chenault, D. B.

Chipman, R.

Cohen, H.

Corti, G.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

De Martino, A.

Dolfi, D.

Drvillon, B.

A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
[Crossref]

Dubreuil, M.

Fade, J.

Fallet, C.

Felton, M.

Feneyrou, P.

Fineschi, S.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Frein, L.

Galland, F.

Garcia-Caurel, E.

A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
[Crossref]

Goldstein, D. L.

Gori, L.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Gorria, P.

Goudail, F.

Gurton, K. P.

Hamel, C.

Hu, H.

Ibrahim, B. H.

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

Laude, B.

A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
[Crossref]

Le Jeune, B.

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

Leviandier, L.

Li, N.

Manhas, S.

Martino, A. D.

A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
[Crossref]

Martino, A.-D.

Mei, G.

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Micros. 180, 140–147 (1995).
[Crossref]

Meriaudeau, F.

Morel, O.

Nazac, A.

Novikova, T.

Oldenbourg, R.

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Micros. 180, 140–147 (1995).
[Crossref]

Orlik, X.

Pace, E.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Panigrahi, S.

Pezzaniti, J. L.

Pierangelo, A.

Plassart, C.

Pust, N. J.

Ramachandran, H.

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

Richert, M.

Rivet, S.

Romoli, M.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Rossi, G.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Roth, L. E.

Sauer, H.

Shaw, J. A.

Stolz, C.

Twietmeyer, K. M.

Tyo, J. S.

Validire, P.

Vannier, N.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
[Crossref]

Zangrilli, L.

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Zhang, Y.

Zhao, H.

Appl. Opt. (8)

M. J. Abuleil and I. Abdulhalim, “Birefringence measurement using rotating analyzer approach and quadrature cross points,” Appl. Opt. 10, 2097–2104 (2014).
[Crossref]

O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
[Crossref] [PubMed]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
[Crossref] [PubMed]

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders, ” Appl. Opt. 45, 5470–5478 (2006).
[Crossref] [PubMed]

G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51, 5302–5309 (2012).
[Crossref] [PubMed]

Y. Zhang, H. Zhao, and N. Li, “Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders,” Appl. Opt. 52, 1284–1292 (2013).
[Crossref] [PubMed]

J. Fade, S. Panigrahi, A. Carré, L. Frein, C. Hamel, F. Bretenaker, H. Ramachandran, and M. Alouini, “Long-range polarimetric imaging through fog,” Appl. Opt. 53, 3854–3865 (2014).
[Crossref] [PubMed]

N. Vannier, F. Goudail, C. Plassart, M. Boffety, P. Feneyrou, L. Leviandier, F. Galland, and N. Bertaux, “Active polarimetric imager with near infrared laser illumination for adaptive contrast optimization,” Appl. Opt. 54, 7622–7631 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[Crossref] [PubMed]

J. Micros. (1)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Micros. 180, 140–147 (1995).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

S. Fineschi, L. Zangrilli, G. Rossi, L. Gori, M. Romoli, G. Corti, G. Capobianco, E. Antonucci, and E. Pace, “KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph,” Proc. SPIE 5901, 59011I (2005)
[Crossref]

Thin Solid Films (1)

A. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of mueller polarimeters,” Thin Solid Films 455456, 112–119 (2004).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Relationship between the retardance induced by a LCVR and the voltage applied to the device. The three curves show this relationship for three different wavelengths: 450 nm (blue), 550 nm (green), 650 nm (red).
Fig. 2
Fig. 2 Spectral response of the camera (η(λ) - gray plain curve) and spectrum of the source (I 0(λ) - gray dashed curve), used in the simulations. The impact of both parameters is modeled by a single function ρ(λ) = η(λ)I 0(λ) (black plain curve).
Fig. 3
Fig. 3 Contrast map at λ = 550 nm, as a function of ( δ 1 λ , δ 2 λ ) the retardances induced by the PSG with τ 2/σ 2 = 1 for Scene 1 .
Fig. 4
Fig. 4 Contrast as a function of bandwidth of the system with τ 2/σ 2 = 1 for Scene 1 .
Fig. 5
Fig. 5 Contrast maps as a function of ( δ 1 λ , δ 2 λ ) the retardances induced by the PSG with τ 2/σ 2 = 1 for Scene 1 and different wavelengths: (a) 450 nm, (b) 600 nm (c) 750 nm. The red dot corresponding to the same configuration as indicated in Fig. 3.
Fig. 6
Fig. 6 Contrast map at λ = 550 nm, as a function of ( δ 1 λ , δ 2 λ ) the retardances induced by the PSG with τ 2/σ 2 = 1 for Scene 2 . The red dot indicates the position of the maximum.
Fig. 7
Fig. 7 Contrast as a function of bandwidth of the system with τ 2/σ 2 = 1 for Scene 2 .
Fig. 8
Fig. 8 Schematic of the optical set-up: FS - white-light fiber source, L1, L2 - two lenses, AD, FD - aperture and field diaphragms, P1, P2 - linear polarizers, LC1...4 - liquid crystal variables retarders, F - filter in the monoband case, C - CCD camera.
Fig. 9
Fig. 9 (a) Scheme of the observed scene. (b) Standard intensity image, with an exposure time of 100 ms.
Fig. 10
Fig. 10 (a) Intensity image taken using the 10nm-wide narrowband filter centered at λ = 640 nm and the PSG/PSA configuration optimal for 640 nm, with an exposure time of 100 ms. (b) Same image for an exposure time of 2 ms. (c) Intensity image taken without the filter using the PSG/PSA configuration optimal for 640 nm and an exposure time of 2 ms. (d) Intensity image taken without the filter after optimizing the PSG/PSA configuration optimal for the bandwidth and with an exposure time of 2 ms.
Fig. 11
Fig. 11 Intensity distribution of the target (blue) and the background (red) for (a) Figure 10.a, (b) Figure 10.b, and (c) Figure 10.c and (d) Figure 10.d. For better reading and comparison, the three histograms were shifted in order to have min{〈it 〉, 〈ib 〉} = 0.

Tables (2)

Tables Icon

Table 1 Parameters defining the two scenes considered in the simulations.

Tables Icon

Table 2 Summary of the different experimental configurations and results (exposure time = 2ms)

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

S = [ 1 s θ 1 ( λ ) ] T = [ 1 t θ 2 ( λ ) ]
s θ 1 ( λ ) = [ cos ( ϕ 1 λ ) sin ( ϕ 1 λ ) sin ( ϕ 2 λ ) sin ( ϕ 1 λ ) cos ( ϕ 2 λ ) ] t θ 2 ( λ ) = [ cos ( ϕ 4 λ ) sin ( ϕ 4 λ ) sin ( ϕ 3 λ ) sin ( ϕ 4 λ ) cos ( ϕ 3 λ ) ]
M = [ M 0 , ( λ ) m T ( λ ) n ( λ ) M ˜ ( λ ) ]
i = τ η ( λ ) I 0 ( λ ) 2 T T M S + ν
i t = τ ρ ( λ ) 2 T T M t S and i b = τ ρ ( λ ) 2 T T M b S
C = 1 σ 2 ( i t i b ) 2
C λ ( θ 1 , θ 2 ) = τ 2 4 σ 2 ρ 2 ( λ ) ( Δ M 0 ( λ ) + Δ m T ( λ ) s θ 1 ( λ ) + t θ 2 T ( λ ) [ Δ n ( λ ) + D ( λ ) s θ 1 ( λ ) ] ) 2
Δ M 0 ( λ ) = M 0 , t ( λ ) M 0 , b ( λ ) Δ n ( λ ) = n t ( λ ) n b ( λ ) Δ m ( λ ) = m t ( λ ) m b ( λ ) D ( λ ) = M ˜ t ( λ ) M ˜ b ( λ )
χ θ 1 ( λ ) = Δ M 0 ( λ ) + Δ m T ( λ ) s θ 1 ( λ )
u θ 1 ( λ ) = Δ n ( λ ) + D ( λ ) s θ 1 ( λ )
C λ ( θ 1 , θ 2 ) = τ 2 4 σ 2 ρ 2 ( λ ) [ χ θ 1 ( λ ) + t θ 2 T ( λ ) u θ 1 ( λ ) ] 2
t θ 2 , opt λ ( λ ) = sign [ χ θ 1 ( λ ) ] u θ 1 ( λ ) u θ 1 ( λ )
θ 1 , opt λ = argmax θ 1 [ C λ ( θ 1 , θ 2 , opt λ ) ]
C Δ λ ( θ 1 , θ 2 ) = τ 2 4 σ 2 ( Δ λ ρ ( λ ) [ χ θ 1 ( λ ) + t θ 2 T ( λ ) u θ 1 ( λ ) ] d λ ) 2
( θ 1 , opt Δ λ , θ 2 , opt Δ λ ) = argmax θ 1 , θ 2 [ C Δ λ ( θ 1 , θ 2 ) ]
C Δ λ = C 0 × ( Δ λ ) 2
M ( λ ) = [ 1 0 T 0 M ˜ ( λ ) ]
C λ ( θ 1 , θ 2 ) = τ 2 4 σ 2 ( ρ t θ 2 T Ds θ 1 ) 2
t θ 2 opt = Ds θ 1 Ds θ 1
C λ ( θ 1 , θ 2 opt ) = C λ opt ( θ 1 ) = τ 4 4 σ 2 ρ 2 s θ 1 T D T Ds θ 1
D = X T Λ Y
C λ opt ( θ 1 ) = C λ opt ( y ) = τ 2 4 σ 2 ρ 2 y T Λ T Λ y
Λ = ( 0 0 0 0 0 0 0 )
C λ opt ( y ) = ζ 2 Λ y 2 = ζ 2 2 [ y 1 2 + y 2 2 ]
y = ( cos ( θ ) sin ( θ ) 0 )

Metrics