Abstract

We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation

Joseph Kakande, Carl Lundström, Peter A. Andrekson, Zhi Tong, Magnus Karlsson, Periklis Petropoulos, Francesca Parmigiani, and David J. Richardson
Opt. Express 18(5) 4130-4137 (2010)

Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input

Renyong Tang, Jacob Lasri, Preetpaul S. Devgan, Vladimir Grigoryan, Prem Kumar, and Michael Vasilyev
Opt. Express 13(26) 10483-10493 (2005)

Experimental analysis of degenerate vector phase-sensitive amplification

Abel Lorences-Riesgo, Fabrizio Chiarello, Carl Lundström, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 22(18) 21889-21902 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
    [Crossref]
  2. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
    [Crossref]
  3. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [Crossref]
  4. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb/s optical time division multiplexed networks,” J. Lightwave Technol. 20(12), 2086–2100 (2002).
    [Crossref]
  5. H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
    [Crossref]
  6. S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
    [Crossref]
  7. J. Kurumida, H. Uenohara, and K. Kobayashi, “All-optical label and payload separation using a self-switching technique of a SOA-MZI,” in European Conference on Optical Communications (IEEE, 2006), pp. 1–2.
  8. J. P. Wang, B. S. Robinson, S. J. Savage, S. A. Hamilton, E. P. Ippen, R. Mu, H. Wang, J. Sarathy, and B. B. Stefanov, “Efficient performance optimization of SOA-MZI devices,” Opt. Express 16(5), 3288–3292 (2008).
    [Crossref] [PubMed]
  9. D. J. Hagan, Z. Wang, G. Stegeman, E. W. Van Stryland, M. Sheik-Bahae, and G. Assanto, “Phase-controlled transistor action by cascading of second-order nonlinearities in KTP,” Opt. Lett. 19(17), 1305–1307 (1994).
    [Crossref] [PubMed]
  10. P. Sethi and S. Roy, “All-optical ultrafast switching in 2x2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates,” J. Lightwave Technol. 32(12), 2173–2180 (2014).
    [Crossref]
  11. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [Crossref]
  12. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [Crossref]
  13. L. Lengle, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, T-N. Nguyen, C. Pareige, R. Madec, J-C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10GB/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in European Conference on Optical Communications (IEEE, 2012), paper We.2 E.5.
  14. E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, R. D. Buijs, B. de Ronde, A. P. Mosk, J. M. Gérard, and W. L. Vos, “All-optical switching of a microcavity repeated at terahertz rates,” Opt. Lett. 38(3), 374–376 (2013).
    [Crossref] [PubMed]
  15. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
    [Crossref] [PubMed]
  16. P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16(15), 10956–10961 (2008).
    [Crossref] [PubMed]
  17. R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
    [Crossref] [PubMed]
  18. A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22(19), 23512–23527 (2014).
    [Crossref] [PubMed]
  19. G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
    [Crossref] [PubMed]
  20. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
    [Crossref]
  21. C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004).
    [Crossref] [PubMed]
  22. C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
    [Crossref] [PubMed]
  23. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
    [Crossref] [PubMed]
  24. C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
    [Crossref]
  25. S. Oda, H. Sunnerud, and P. A. Andrekson, “High efficiency and high output power fiber-optic parametric amplifier,” Opt. Lett. 32(13), 1776–1778 (2007).
    [Crossref] [PubMed]
  26. P. Kylemark, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Semi-analytic saturation theory of fiber optical parametric amplifiers,” J. Lightwave Technol. 24(9), 3471–3479 (2006).
    [Crossref]
  27. R. R. Nissim, A. Pejkic, E. Myslivets, N. Alic, and S. Radic, “Origin of non-reciprocal response in fiber optics parametric amplifiers,” J. Lightwave Technol. 33(2), 495–502 (2015).
    [Crossref]
  28. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [Crossref] [PubMed]
  29. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26(1), 10–12 (2001).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

E. Yüce, G. Ctistis, J. Claudon, E. Dupuy, R. D. Buijs, B. de Ronde, A. P. Mosk, J. M. Gérard, and W. L. Vos, “All-optical switching of a microcavity repeated at terahertz rates,” Opt. Lett. 38(3), 374–376 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (2)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

2008 (3)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2002 (1)

2001 (2)

K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26(1), 10–12 (2001).
[Crossref] [PubMed]

H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
[Crossref]

2000 (2)

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

1994 (1)

1987 (2)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
[Crossref]

1986 (1)

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Alic, N.

Andrekson, P. A.

Assanto, G.

Bajcsy, M.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Buijs, R. D.

Claudon, J.

Corcoran, B.

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

Ctistis, G.

de Ronde, B.

Devgan, P. S.

Dominguez, J. C.

H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
[Crossref]

Dupuy, E.

Englund, D.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Erasme, D.

H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
[Crossref]

Faraon, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Gérard, J. M.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Grigoryan, V.

Grüner-Nielsen, L.

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Guekos, G.

H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
[Crossref]

Hagan, D. J.

Hamilton, S. A.

Hatakeyama, H.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Inoue, K.

Ippen, E. P.

Itoh, M.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Karlsson, M.

Kato, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Kobayashi, K.

J. Kurumida, H. Uenohara, and K. Kobayashi, “All-optical label and payload separation using a self-switching technique of a SOA-MZI,” in European Conference on Optical Communications (IEEE, 2006), pp. 1–2.

Kumar, P.

Kuo, B. P.

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Kuo, B. P. P.

Kurumida, J.

J. Kurumida, H. Uenohara, and K. Kobayashi, “All-optical label and payload separation using a self-switching technique of a SOA-MZI,” in European Conference on Optical Communications (IEEE, 2006), pp. 1–2.

Kylemark, P.

Lasri, J.

Lundström, C.

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

Majumdar, A.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Malik, R.

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

McKinstrie, C.

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

Mosk, A. P.

Mu, R.

Mukai, T.

Murphy, T. E.

Myslivets, E.

Nakamura, S.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Nishitani, T.

Nissim, R.

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Nissim, R. R.

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Oda, S.

Olsson, S. L. I.

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

Pejkic, A.

Petroff, P.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Potasek, M. J.

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Radic, S.

Robinson, B. S.

Roy, S.

Sarathy, J.

Sasaki, J.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Sasaki, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Savage, S. J.

Sethi, P.

Sheik-Bahae, M.

Shimoda, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Smith, P. W.

P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
[Crossref]

Soto, H.

H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
[Crossref]

Stefanov, B. B.

Stegeman, G.

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

Sugimoto, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Sunnerud, H.

Tajima, K.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Tamanuki, T.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Tang, R.

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Tong, Z.

Ueno, Y.

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

Uenohara, H.

J. Kurumida, H. Uenohara, and K. Kobayashi, “All-optical label and payload separation using a self-switching technique of a SOA-MZI,” in European Conference on Optical Communications (IEEE, 2006), pp. 1–2.

Van Stryland, E. W.

Vasilyev, M.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Vos, W. L.

Vuckovic, J.

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Wang, H.

Wang, J. P.

Wang, Z.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

Wiberg, A. O. J.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

Yang, J.

Yüce, E.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

IEEE Circuits Dev. Mag. (1)

P. W. Smith, “On the role of photonic switching in future communications systems,” IEEE Circuits Dev. Mag. 3(3), 9–14 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photonics Technol. Lett. 12(4), 452–457 (2000).
[Crossref]

C. Lundström, R. Malik, L. Grüner-Nielsen, B. Corcoran, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Fiber optic parametric amplifier with 10 dB net gain without pump dithering,” IEEE Photonics Technol. Lett. 25(3), 234–237 (2013).
[Crossref]

J. Lightwave Technol. (4)

Microw. Opt. Technol. Lett. (1)

H. Soto, J. C. Dominguez, D. Erasme, and G. Guekos, “Demonstration of an all‐optical switch using cross‐polarization modulation in semiconductor optical amplifiers,” Microw. Opt. Technol. Lett. 29(3), 205–208 (2001).
[Crossref]

Nat. Photonics (3)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4(1), 3–5 (2010).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Opt. Express (7)

P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express 16(15), 10956–10961 (2008).
[Crossref] [PubMed]

J. P. Wang, B. S. Robinson, S. J. Savage, S. A. Hamilton, E. P. Ippen, R. Mu, H. Wang, J. Sarathy, and B. B. Stefanov, “Efficient performance optimization of SOA-MZI devices,” Opt. Express 16(5), 3288–3292 (2008).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[Crossref] [PubMed]

A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22(19), 23512–23527 (2014).
[Crossref] [PubMed]

C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004).
[Crossref] [PubMed]

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

G. P. Agrawal and M. J. Potasek, “Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength,” Phys. Rev. A 33(3), 1765–1776 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108(9), 093604 (2012).
[Crossref] [PubMed]

Science (1)

R. Nissim, A. Pejkic, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Ultrafast optical control by few photons in engineered fiber,” Science 345(6195), 417–419 (2014).
[Crossref] [PubMed]

Other (2)

L. Lengle, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, T-N. Nguyen, C. Pareige, R. Madec, J-C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10GB/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in European Conference on Optical Communications (IEEE, 2012), paper We.2 E.5.

J. Kurumida, H. Uenohara, and K. Kobayashi, “All-optical label and payload separation using a self-switching technique of a SOA-MZI,” in European Conference on Optical Communications (IEEE, 2006), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Illustration of the basic principle of the phase-insensitive and phase-sensitive processes governing the fiber-based all-optical switch concept.
Fig. 2
Fig. 2 Experimental setup. The acronyms are explained in the text. Black lines represent optical connections. Red-dashed lines represent electrical connections.
Fig. 3
Fig. 3 (a) Output pump power vs. input power, PI (red) and PSA (black); (b) optical spectra at the output of the PSA for an input signal and idler power of −0.4 dBm, and without any input wave; (c) input signal/idler power vs. output signal/idler power, PI and PSA cases; (d) PSA output power vs phase variation of the signal and idler waves.
Fig. 4
Fig. 4 Time traces: PSA output pump, amplitude and power (continuous line); phase modulated variation (dotted line).

Metrics