Abstract

A space bandwidth product (SBP) enhancement method for holographic display using high-order diffraction of a spatial light modulator (SLM) is proposed. Among numerous high order diffraction terms, the plus-minus first and the zeroth are adopted and guided by holographic optical elements (HOEs) to an identical direction with the same intensity. By using a set of electro-shutters synchronized with corresponding order component, the system acts as if three SLMs are tiled in the horizontal direction. To confirm the feasibility of using HOE as the guiding optics for the system, several optical characteristics of the recording material are measured before using them. Furthermore, a computer generated hologram algorithm is proposed for compensating the wavefront distortion caused by use of the HOE. The demonstrated system achieves a three-fold increase in SBP of a single SLM. The results are verified experimentally.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Volume holographic printing using unconventional angular multiplexing for three-dimensional display

Liangcai Cao, Zheng Wang, Hao Zhang, Guofan Jin, and Claire Gu
Appl. Opt. 55(22) 6046-6051 (2016)

High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element

Huan Deng, Cong Chen, Min-Yang He, Jiao-Jiao Li, Han-Le Zhang, and Qiong-Hua Wang
J. Opt. Soc. Am. A 36(4) 588-593 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  2. http://www.zebraimaging.com/
  3. Y. Kim, E. Stoykova, H. Kang, S. Hong, J. Park, J. Park, and J. Hong, “Seamless full color holographic printing method based on spatial partitioning of SLM,” Opt. Express 23(1), 172–182 (2015).
    [Crossref] [PubMed]
  4. N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
    [Crossref]
  5. K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
    [Crossref]
  6. T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51(11), 1771–1780 (2012).
    [Crossref] [PubMed]
  7. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  8. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [Crossref] [PubMed]
  9. T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawińska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
    [Crossref] [PubMed]
  10. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
    [PubMed]
  11. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
    [Crossref] [PubMed]
  12. T. Mishina, M. Okui, and F. Okano, “Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,” Appl. Opt. 41(8), 1489–1499 (2002).
    [Crossref] [PubMed]
  13. J. Yeom, K. Hong, Y. Jeong, C. Jang, and B. Lee, “Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements,” Opt. Express 22(11), 13659–13670 (2014).
    [Crossref] [PubMed]
  14. J. Yeom, J. Jeong, C. Jang, K. Hong, S. G. Park, and B. Lee, “Reflection-type integral imaging system using a diffuser holographic optical element,” Opt. Express 22(24), 29617–29626 (2014).
    [Crossref] [PubMed]
  15. J.-A. Piao, G. Li, M.-L. Piao, and N. Kim, “Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
    [Crossref]
  16. M.-L. Piao and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt. 53(10), 2180–2186 (2014).
    [Crossref] [PubMed]
  17. H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
    [Crossref]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  19. M.-L. Hsieh and K. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
    [Crossref]
  20. G. Li, A.-H. Phan, N. Kim, and J.-H. Park, “Synthesis of computer-generated spherical hologram of real object with 360° field of view using a depth camera,” Appl. Opt. 52(15), 3567–3575 (2013).
    [Crossref] [PubMed]
  21. G. Li, K. Hong, J. Yeom, N. Chen, J.-H. Park, N. Kim, and B. Lee, “Acceleration method for computer generated spherical hologram calculation of real objects using graphics processing unit,” Chin. Opt. Lett. 12(6), 060016 (2014).
    [Crossref]
  22. D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
    [Crossref]

2015 (1)

2014 (6)

2013 (3)

2012 (2)

2011 (2)

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
[Crossref] [PubMed]

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

2009 (1)

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

2008 (1)

2002 (1)

2001 (1)

M.-L. Hsieh and K. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

1996 (1)

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

1995 (1)

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Berneth, H.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

Bruder, F.-K.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Chen, N.

Deuber, F.

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Facke, T.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Finke, G.

Fukaya, N.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Garbat, P.

Hagen, R.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Hahn, J.

Hennelly, B.

Honda, T.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Honel, D.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Hong, J.

Hong, K.

Hong, S.

Hsieh, M.-L.

M.-L. Hsieh and K. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

Hsu, K.

M.-L. Hsieh and K. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

Ichihashi, Y.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

Jang, C.

Jeong, J.

Jeong, Y.

Jurbergs, D.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Kang, H.

Kim, H.

Kim, N.

Kim, Y.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kozacki, T.

Kujawinska, M.

Lee, B.

Li, G.

Lim, Y.

Maeno, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Matsumoto, K.

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Mishina, T.

Nishikawa, O.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Oi, R.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

Okano, F.

Okui, M.

Onural, L.

Pandey, N.

Park, G.

Park, J.

Park, J.-H.

Park, S. G.

Phan, A.-H.

Piao, J.-A.

Piao, M.-L.

Rolle, T.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Sasaki, H.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

Sato, K.

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

Stoykova, E.

Volkov, A.

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Wakunami, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

Weiser, M.-S.

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Yamamoto, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

Yaras, F.

Yeom, J.

Zaperty, W.

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Korea (1)

Opt. Eng. (1)

M.-L. Hsieh and K. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40(10), 2125–2133 (2001).
[Crossref]

Opt. Express (6)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (4)

N. Fukaya, K. Maeno, O. Nishikawa, K. Matsumoto, K. Sato, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystals devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, “Electro-holographic display using 15Mega pixels LCD,” Proc. SPIE 2652, 15–23 (1996).
[Crossref]

H. Berneth, F.-K. Bruder, T. Facke, R. Hagen, D. Honel, D. Jurbergs, T. Rolle, and M.-S. Weiser, “Holographic recording aspects of high-resolution Bayfol HX photopolymer,” Proc. SPIE 7957, 79570H (2011).
[Crossref]

D. Jurbergs, F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, T. Rolle, M.-S. Weiser, and A. Volkov, “New recording material for the holographic industry,” Proc. SPIE 7233, 72330K (2009).
[Crossref]

Sci. Rep. (2)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size scalable full-parallax coloured three-dimensional video by electronic holography,” Sci. Rep. 4, 4000 (2014).
[PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4, 6177 (2014).
[Crossref] [PubMed]

Other (1)

http://www.zebraimaging.com/

Supplementary Material (1)

NameDescription
» Visualization 1: MOV (106 KB)      It is a video file that demonstrates the final experiment

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic diagram of proposed method.
Fig. 2
Fig. 2 Schematic diagram of reflection type HOE.
Fig. 3
Fig. 3 Wave vector space diagram of reflection type HOE.
Fig. 4
Fig. 4 Schematic of HOE (a) recording and (b) reconstruction processes.
Fig. 5
Fig. 5 Astigmatism aberration caused by distorted FZP.
Fig. 6
Fig. 6 Feasibility measurements of using HOE as guiding optics for the holographic display: (a) Experimental setup. (b) Angular variation of reconstructed wave and (c) diffraction efficiency according to the angle deviation of probe wave.
Fig. 7
Fig. 7 Diffraction efficiency according to exposure energy.
Fig. 8
Fig. 8 Guided three order terms of the SLM by the HOEs.
Fig. 9
Fig. 9 Measurement of FZP distortion. (a) Configuration and (b) the experimental setup. (c) The captured reconstruction images.
Fig. 10
Fig. 10 Comparison of the reconstructed holograms: (a) without using the compensation algorithm and (b) using the compensation algorithm.
Fig. 11
Fig. 11 Configuration of proposed holographic display system.
Fig. 12
Fig. 12 Experimental setup of the proposed holographic display system.
Fig. 13
Fig. 13 Experimental results of the reconstructed holograms by the holographic display with increased SBP (see Visualization 1).

Tables (1)

Tables Icon

Table 1 Parameters of the relay lenses and virtual SLMs.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k g = u ^ [ | k s |sin( θ sin )| k r |sin( θ rin ) ]+ v ^ [ | k s |cos( θ sin )+| k r |cos( θ rin ) ],
k g = u ^ { 1 1+ α u [ | k s |sin( θ sin )| k r |sin( θ rin ) ] }+ v ^ { 1 1+ α v [ | k s |cos( θ sin )+| k s |cos( θ rin ) ] },
θ c = sin 1 { sin( θ p )+sin( θ s )sin( θ r ) },
η= { 1+ 1 ξ 2 / ν 2 [ sin h 2 ( ν 2 ξ 2 ) 1/2 ] } 1 ,
ν= iπΔdΔn λ [ cos( θ g θ p )cos( θ g + θ p ) ] 1/2 , ξ= πΔdΔθsin θ p Λcos( θ g θ p )( λcos θ g )/ρ ,
θ s = sin 1 { ρsin{ cos 1 [ ( 1+ α ρ )sin( Ψ + )Γ ]+ tan 1 [ 1+ α u 1+ α v tan( Ψ ) ] } }, θ r = sin 1 { ρsin{ cos 1 [ ( 1+ α ρ )sin( Ψ + )Γ ] tan 1 [ 1+ α u 1+ α v tan( Ψ ) ] } },
Ψ + =[ cos 1 ( sin θ p ( 1+ α ρ )ρ )+ cos 1 ( sin θ c ( 1+ α ρ )ρ ) ]/2, Ψ =[ cos 1 ( sin θ p ( 1+ α ρ )ρ ) cos 1 ( sin θ c ( 1+ α ρ )ρ ) ]/2, Γ= ( 1+ α v ) 2 + ( 1+ α u ) 2 tan 2 ( Ψ ) 1+ tan 2 ( Ψ ) .
t( x )={ 1 , | x |<a/2 0 , a/2<| x |<p/2,
T n = 1 p p/2 p/2 t( x )exp( j2π f n x )dx = asin( π f n a ) pπ f n a ,
I n = { sin[ πasin( | ± β n | )/λ ] πasin( | ± β n | )/λ } 2 { sin[ Nπpsin( | ± β n | )/λ ] Nsin[ πpsin( | ± β n | )/λ ] } 2 .
ϕ 1 = tan 1 ( sin( θ p 2 + β 1 )cos θ p2 cos( θ p 2 + β 1 ) ), ϕ 3 = tan 1 ( cos θ p2 sin( θ p2 β 1 ) cos( θ p 2 β 1 ) ).
U( x,y )= A o exp[ i 2π λ [ ( x x o )/cos θ p ] 2 + ( y y o ) 2 + ( z z o ) 2 ] [ ( x x o )/cos θ p ] 2 + ( y y o ) 2 + ( z z o ) 2 ,
η= P D P D + P T .

Metrics