Abstract

The traditional three-layered metal-dielectric-metal Fabry-Perot filter is developed as a new metal-dielectric multilayered band-pass filter. Our design method allows metal and dielectric films to be alternatively arranged to achieve a narrow and high transmission peak and the peak height remains unchanged for any number of metal films arranged in the multilayer. Furthermore, the equivalent refractive index of a subwavelength metal-dielectric multilayer could be negative real at the passband of the filter and such metamaterial exhibits stronger figure of merit than a previous result. By choosing a material with high refractive index as the dielectric film, such metamaterial exhibits a pass band that depends weakly on the angle of incidence.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical configuration for unpolarized ultra-long-range surface-plasmon-polariton waves

Yi-Jun Jen and Ching-Wei Yu
Appl. Opt. 50(9) C154-C158 (2011)

Metamaterial-inspired compact optical coating for broadband polarization beam splitting

Yi-Jun Jen, Yi-Ciang Jhang, Wei-Chien Wang, and Kai-Lun Wu
Opt. Express 26(2) 811-823 (2018)

Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation

Yi-Jun Jen, Akhlesh Lakhtakia, Ching-Wei Yu, and Tzu-Yi Chan
J. Opt. Soc. Am. A 26(12) 2600-2606 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Addison Wesley, 2002).
  2. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  3. J. T. Verdeyen, Laser Electronics, 3th ed. (New Jersey: Prentice Hall, 1995).
  4. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).
  5. D. G. Blair, The Detection of Gravitational Waves (Cambridge University Press, 2009).
  6. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).
  7. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47(3), 230–239 (1957).
    [Crossref]
  8. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
    [Crossref] [PubMed]
  9. A. Macleod, “Optical thin-film metamaterials,” SVC Bulletin 11(3), 24–31 (2014).
  10. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
    [Crossref]
  11. M. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
    [Crossref]
  12. E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
    [Crossref] [PubMed]
  13. R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
    [Crossref]
  14. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  15. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26(12), 2600–2606 (2009).
    [Crossref] [PubMed]
  16. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
    [Crossref]

2014 (2)

A. Macleod, “Optical thin-film metamaterials,” SVC Bulletin 11(3), 24–31 (2014).

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
[Crossref]

2013 (2)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

2010 (1)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

1998 (2)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

M. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

1957 (1)

Abashin, M.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Agrawal, A.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Berning, P. H.

Bloemer, M.

M. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Chan, T.-Y.

Chau, K. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

de Waele, R.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Jen, Y.-J.

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kuipers, L.

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Lakhtakia, A.

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Lezec, H. J.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Maas, R.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
[Crossref]

Macleod, A.

A. Macleod, “Optical thin-film metamaterials,” SVC Bulletin 11(3), 24–31 (2014).

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Parsons, J.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
[Crossref]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Pertsch, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Polman, A.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
[Crossref]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Scalora, M.

M. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

Turner, A. F.

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Verhagen, E.

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
[Crossref]

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Yu, C.-W.

ACS Photonics (1)

R. Maas, E. Verhagen, J. Parsons, and A. Polman, “Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials,” ACS Photonics 1(8), 670–676 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72(14), 1676–1678 (1998).
[Crossref]

J. Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377–2383 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Nature (1)

T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature 497(7450), 470–474 (2013).
[Crossref] [PubMed]

Phys. Rev. B (1)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77(19), 195328 (2008).
[Crossref]

Phys. Rev. Lett. (1)

E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105(22), 223901 (2010).
[Crossref] [PubMed]

SVC Bulletin (1)

A. Macleod, “Optical thin-film metamaterials,” SVC Bulletin 11(3), 24–31 (2014).

Other (6)

E. Hecht, Optics (Addison Wesley, 2002).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

J. T. Verdeyen, Laser Electronics, 3th ed. (New Jersey: Prentice Hall, 1995).

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).

D. G. Blair, The Detection of Gravitational Waves (Cambridge University Press, 2009).

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Loci of NAD for a typical metal-dielectric-metal FP filter; dashed lines represent possible loci of metal films with refractive index n-ik; (b) NAD loci of modified five-layered FP filter with structure Ni/M1D2M3D4M5/Nsub.
Fig. 2
Fig. 2 (a) Ni/M1D2M3D4M5/Nsub = NAD loci of a Air/Ag(22.7 nm)/Ta2O5(100.5 nm)/Ag(17 nm)/Ta2O5(107 nm)/ Ag(22.7 nm)/BK7 glass system designed at a wavelengthof 600 nm, (b) Transmittance spectra of Ni/M1D2M3D4M5/Nsub = Air/Ag(22.7 nm)/Ta2O5(100.5 nm)/Ag(17 nm)/Ta2O5(107 nm)/ Ag(22.7 nm)/BK7 glass system and Air/Ag(22.7 nm)/Ta2O5(84 nm)/Ag(22.7 nm)/BK7 glass system
Fig. 3
Fig. 3 Distribution of magnitude of electric filed throughout five-layered structure
Fig. 4
Fig. 4 (a) NAD loci of Ni/M1D2M3D4M5D6M7/Nsub = Air/Ag (15 nm)/Ta2O5(102 nm)/Ag(25 nm)/Ta2O5(106.5 nm)/Ag(25 nm)/Ta2O5(108 nm)/Ag(22.7 nm)/BK7 glass system designed for a wavelength of 600 nm. (b) Transmittance as a function of wavelength.
Fig. 5
Fig. 5 (a) Admittance loci of Ni/M1D2M3D4M5/Nsub = Air/Ag(11 nm)/TiO2(26 nm)/Ag(25 nm)/TiO2(28 nm)/Ag(20 nm)/BK7 glass system.(b) Equivalent refractive index and FOM as functions of angle of incidence.
Fig. 6
Fig. 6 (a) Admittance loci of Ni/M1D2M3D4M5/Nsub = Air/Ag(10 nm)/α-Si(34 nm)/Ag(42 nm)/α-Si(33nm)/Ag(13nm)/glass system. (b) Admittance loci of Ni/M1D2M3D4M5/Nsub = Air/Ag(12.0 nm)/α-Si(33.4 nm)/Ag(32.5 nm)/α-Si(35.1 nm)/Ag(11.0 nm)/glass system.
Fig. 7
Fig. 7 The SEM image of cross-section of fabricated sample; thicknesses of layers are Ni/M1D2M3D4M5/Nsub = Air/Ag (12.0 nm)/α-Si (33.4 nm)/Ag(32.5 nm)/α-Si(35.1 nm)/Ag(11.0 nm)/glass.
Fig. 8
Fig. 8 (a) Transmittance spectra of designed and deposited experimental multilayers, Air/Ag/α-Si/Ag/α-Si/Ag/glass. (b) Equivalent refractive index and FOM as functions of angle of incidence.
Fig. 9
Fig. 9 Measurement of (a) P-polarized and (b) S-polarized transmittance of deposited multilayer as functions wavelength and angle of incidence.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η={ Ncos θ i cos θ t Ppolarization Ncos θ t cos θ i Spolarization

Metrics