Abstract

Conventional polarization-dependent fluorescence correlation spectroscopy (pol-FCS) requires two sets of photon detectors to eliminate after-pulse noises (dual-channel pol-FCS; DC-pol-FCS) in the sub-microsecond range. In this study, we successfully realized pol-FCS using a visible-wavelength superconductive nanowire single-photon detector (single-channel pol-FCS; SC-pol-FCS). The detector used is free of after-pulse noises and thus eliminates the need for dual channels in pol-FCS. Further, the optics in the SC-pol-FCS system are easier to adjust than those in the conventional system. Consequently, we obtained higher signal-to-noise ratios compared with conventional DC-pol-FCS systems. Thus, SC-pol-FCS is a potentially useful system for obtaining pol-FCS measurements, and can facilitate improved rotational diffusion studies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector

Taro Yamashita, Dengkuan Liu, Shigehito Miki, Johtaro Yamamoto, Tokuko Haraguchi, Masataka Kinjo, Yasushi Hiraoka, Zhen Wang, and Hirotaka Terai
Opt. Express 22(23) 28783-28789 (2014)

EMCCD-based spectrally resolved fluorescence correlation spectroscopy

Felix Bestvater, Zahir Seghiri, Moon Sik Kang, Nadine Gröner, Ji Young Lee, Kang-Bin Im, and Malte Wachsmuth
Opt. Express 18(23) 23818-23828 (2010)

Fast and high efficiency superconducting nanowire single-photon detector at 630  nm wavelength

Heqing Wang, Hao Li, Lixing You, Yong Wang, Lu Zhang, Xiaoyan Yang, Weijun Zhang, Zhen Wang, and Xiaoming Xie
Appl. Opt. 58(8) 1868-1872 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
    [Crossref]
  2. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: Novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
    [Crossref] [PubMed]
  3. S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
    [Crossref] [PubMed]
  4. M. Ehrenberg and R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
    [Crossref]
  5. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
    [Crossref]
  6. J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
    [Crossref] [PubMed]
  7. M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
    [Crossref]
  8. T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
    [Crossref] [PubMed]
  9. D. Liu, S. Miki, T. Yamashita, L. You, Z. Wang, and H. Terai, “Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength,” Opt. Express 22(18), 21167–21174 (2014).
    [Crossref] [PubMed]
  10. P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
    [Crossref] [PubMed]
  11. J. Widengren, Ü. Mets, and R. Rigler, “Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy,” Chem. Phys. 250(2), 171–186 (1999).
    [Crossref]
  12. S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy and Brownian rotational diffusion,” Biopolymers 14(1), 119–137 (1975).
    [Crossref]
  13. R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
    [Crossref] [PubMed]
  14. T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
    [Crossref] [PubMed]
  15. M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
    [Crossref] [PubMed]
  16. D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
    [Crossref] [PubMed]
  17. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]
  18. S. J. Broersma, “Rotational Diffusion Constant of a Cylindrical Particle,” J. Chem. Phys. 32(6), 1626–1631 (1960).
    [Crossref]
  19. S. J. Broersma, “Viscous Force Constant for a Closed Cylinder,” J. Chem. Phys. 32(6), 1632–1635 (1960).
    [Crossref]
  20. R. Vasanthi, S. Ravichandran, and B. Bagchi, “Needlelike motion of prolate ellipsoids in the sea of spheres,” J. Chem. Phys. 114(18), 7989–7992 (2001).
    [Crossref]

2015 (1)

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

2012 (2)

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

2010 (2)

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
[Crossref]

2007 (2)

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: Novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

2006 (1)

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

2002 (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[Crossref]

2001 (1)

R. Vasanthi, S. Ravichandran, and B. Bagchi, “Needlelike motion of prolate ellipsoids in the sea of spheres,” J. Chem. Phys. 114(18), 7989–7992 (2001).
[Crossref]

1999 (1)

J. Widengren, Ü. Mets, and R. Rigler, “Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy,” Chem. Phys. 250(2), 171–186 (1999).
[Crossref]

1989 (1)

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

1975 (1)

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy and Brownian rotational diffusion,” Biopolymers 14(1), 119–137 (1975).
[Crossref]

1974 (2)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

M. Ehrenberg and R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

1960 (2)

S. J. Broersma, “Rotational Diffusion Constant of a Cylindrical Particle,” J. Chem. Phys. 32(6), 1626–1631 (1960).
[Crossref]

S. J. Broersma, “Viscous Force Constant for a Closed Cylinder,” J. Chem. Phys. 32(6), 1632–1635 (1960).
[Crossref]

Aragón, S. R.

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy and Brownian rotational diffusion,” Biopolymers 14(1), 119–137 (1975).
[Crossref]

Bagchi, B.

R. Vasanthi, S. Ravichandran, and B. Bagchi, “Needlelike motion of prolate ellipsoids in the sea of spheres,” J. Chem. Phys. 114(18), 7989–7992 (2001).
[Crossref]

Baranov, D.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[Crossref]

Broersma, S. J.

S. J. Broersma, “Rotational Diffusion Constant of a Cylindrical Particle,” J. Chem. Phys. 32(6), 1626–1631 (1960).
[Crossref]

S. J. Broersma, “Viscous Force Constant for a Closed Cylinder,” J. Chem. Phys. 32(6), 1632–1635 (1960).
[Crossref]

Cingolani, R.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Cramb, D. T.

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

Doose, S.

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

Dorfschmid, M.

M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
[Crossref]

Ehrenberg, M.

M. Ehrenberg and R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Elson, E. L.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Falqui, A.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Fiore, A.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Fujii, F.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Fujita, H.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

Giannini, C.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Haraguchi, T.

Haustein, E.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: Novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

Heuff, R. F.

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

Hiraoka, Y.

Iwane, A. H.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Jin, T.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Kask, P.

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

Kinjo, M.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[Crossref] [PubMed]

Komori, Y.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[Crossref]

Lafont, U.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Lippmaa, E.

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

Liu, D.

Magde, D.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Manna, L.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Mets, U.

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

Mets, Ü.

J. Widengren, Ü. Mets, and R. Rigler, “Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy,” Chem. Phys. 250(2), 171–186 (1999).
[Crossref]

Miki, S.

Mikuni, S.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Miyasaka, M.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

Müllen, K.

M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
[Crossref]

Oasa, S.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Ohmachi, M.

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Pecora, R.

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy and Brownian rotational diffusion,” Biopolymers 14(1), 119–137 (1975).
[Crossref]

Piksarv, P.

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

Pooga, M.

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Ravichandran, S.

R. Vasanthi, S. Ravichandran, and B. Bagchi, “Needlelike motion of prolate ellipsoids in the sea of spheres,” J. Chem. Phys. 114(18), 7989–7992 (2001).
[Crossref]

Rigler, R.

J. Widengren, Ü. Mets, and R. Rigler, “Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy,” Chem. Phys. 250(2), 171–186 (1999).
[Crossref]

M. Ehrenberg and R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Sasaki, A.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Schwille, P.

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: Novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

Swift, J. L.

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

Terai, H.

Tsay, J. M.

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

Umemoto, E.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

van Huis, M.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Vasanthi, R.

R. Vasanthi, S. Ravichandran, and B. Bagchi, “Needlelike motion of prolate ellipsoids in the sea of spheres,” J. Chem. Phys. 114(18), 7989–7992 (2001).
[Crossref]

Wang, Z.

Watanabe, T. M.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

Weiss, S.

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

Widengren, J.

J. Widengren, Ü. Mets, and R. Rigler, “Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy,” Chem. Phys. 250(2), 171–186 (1999).
[Crossref]

Wöll, D.

M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
[Crossref]

Yamamoto, J.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

T. Yamashita, D. Liu, S. Miki, J. Yamamoto, T. Haraguchi, M. Kinjo, Y. Hiraoka, Z. Wang, and H. Terai, “Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector,” Opt. Express 22(23), 28783–28789 (2014).
[Crossref] [PubMed]

Yamashita, T.

Yanagida, T.

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

You, L.

Zandbergen, H.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Zanella, M.

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Zumbusch, A.

M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: Novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref] [PubMed]

Biophys. J. (2)

P. Kask, P. Piksarv, M. Pooga, U. Mets, and E. Lippmaa, “Separation of the rotational contribution in fluorescence correlation experiments,” Biophys. J. 55(2), 213–220 (1989).
[Crossref] [PubMed]

T. M. Watanabe, F. Fujii, T. Jin, E. Umemoto, M. Miyasaka, H. Fujita, and T. Yanagida, “Four-dimensional spatial nanometry of single particles in living cells using polarized quantum rods,” Biophys. J. 105(3), 555–564 (2013).
[Crossref] [PubMed]

Biopolymers (2)

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy and Brownian rotational diffusion,” Biopolymers 14(1), 119–137 (1975).
[Crossref]

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Chem. Phys. (2)

J. Widengren, Ü. Mets, and R. Rigler, “Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy,” Chem. Phys. 250(2), 171–186 (1999).
[Crossref]

M. Ehrenberg and R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

FEBS Lett. (1)

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J. M. Tsay, S. Doose, and S. Weiss, “Rotational and translational diffusion of peptide-coated CdSe/CdS/ZnS nanorods studied by fluorescence correlation spectroscopy,” J. Am. Chem. Soc. 128(5), 1639–1647 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (3)

S. J. Broersma, “Rotational Diffusion Constant of a Cylindrical Particle,” J. Chem. Phys. 32(6), 1626–1631 (1960).
[Crossref]

S. J. Broersma, “Viscous Force Constant for a Closed Cylinder,” J. Chem. Phys. 32(6), 1632–1635 (1960).
[Crossref]

R. Vasanthi, S. Ravichandran, and B. Bagchi, “Needlelike motion of prolate ellipsoids in the sea of spheres,” J. Chem. Phys. 114(18), 7989–7992 (2001).
[Crossref]

Macromolecules (1)

M. Dorfschmid, K. Müllen, A. Zumbusch, and D. Wöll, “Translational and rotational diffusion during radical bulk polymerization: a comparative investigation by full correlation fluorescence correlation Spectroscopy (fcFCS),” Macromolecules 43(14), 6174–6179 (2010).
[Crossref]

Nano Lett. (1)

D. Baranov, A. Fiore, M. van Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna, “Assembly of colloidal semiconductor nanorods in solution by depletion attraction,” Nano Lett. 10(2), 743–749 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

R. F. Heuff, J. L. Swift, and D. T. Cramb, “Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities,” Phys. Chem. Chem. Phys. 9(16), 1870–1880 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Ohmachi, Y. Komori, A. H. Iwane, F. Fujii, T. Jin, and T. Yanagida, “Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V,” Proc. Natl. Acad. Sci. U.S.A. 109(14), 5294–5298 (2012).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical setup: Pol, polarizer. DM, dichroic mirror. Obj., objective lens. Em., emission filter. M, mirror. Ana., analyzer. BS, beam splitter. L, lens. MF, multimode fiber.
Fig. 2
Fig. 2 Size distribution of the Qrod. (a) TEM image of the Qrod; the scale-bar length is 20 nm. (b) Histogram of the diameter and length of the Qrod; n = 48.
Fig. 3
Fig. 3 Results of DC-pol-FCS. A sample of 100 nM Qrod was considered here. (a) and (b) are the typical CCFs and the residuals of fitting obtained by the APDs and VW-SSPDs, respectively. The symbols represent experimentally obtained CCFs, while the red solid lines show the fitted theoretical CCF curves. (c) and (d) show the CCFs normalized by the number of particles detected by the APDs and VW-SSPDs, respectively. The solid lines are the averaged CCFs and the shaded areas show the standard deviations (n = 3).
Fig. 4
Fig. 4 Results of the SC-pol-FCS experiment. A 100 nM Qrod sample was considered. (a) and (b) are the experimentally obtained typical ACFs measured using the APDs and VW-SSPDs, respectively. (c) and (d) are the same ACFs as (a) and (b) but in the different y scale and the residuals of fitting. The symbols represent the experimentally obtained ACFs, and the solid red lines show the fitted theoretical CCF curves. (e) and (f) are the CCFs normalized by the particle numbers detected by the APDs and the VW-SSPDs, respectively. The solid lines are the averaged CCFs and the shaded areas show the standard deviations (n = 3).
Fig. 5
Fig. 5 Fitted parameters of the rotational diffusion components. (a) Comparison of the relaxation time of the rotational diffusion component: according to the student t-test there were no significant differences between the APD cross and each condition. (b) Comparison of the fraction of the rotational diffusion component: according to the student t-test there were no significant difference between the APD cross and each condition in each polarization condition except between the APD cross and the APD single in the XYY condition. The error bars show the standard deviations. * p = 0.020 < 0.05. n = 3.

Tables (2)

Tables Icon

Table 1 The polarization condition and its optical configurations.

Tables Icon

Table 2 Results of global nonlinear fitting.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G n,m (τ)= I n (t) I m (t+τ) I n (t) I m (t) 1= G D (τ) G R (τ),
G D (τ)= 1 N [ f 1 ( 1+ τ τ D1 ) 1 ( 1+ τ s 2 τ D1 ) 1/2 +( 1 f 1 ) ( 1+ τ τ D2 ) 1 ( 1+ τ s 2 τ D2 ) 1/2 ],
G R (τ)=1+ f R exp( τ τ R ),

Metrics