Abstract

Silicon-on-insulator Mach-Zehnder interferometer structures that utilize a photonic crystal nanobeam waveguide in each of two connecting arms are proposed here as efficient 2 × 2 resonant, wavelength-selective electro-optical routing switches that are readily cascaded into on-chip N × N switching networks. A localized lateral PN junction of length ~2 μm within each of two identical nanobeams is proposed as a means of shifting the transmission resonance by 400 pm within the 1550 nm band. Using a bias swing ΔV = 2.7 V, the 474 attojoules-per-bit switching mechanism is free-carrier sweepout due to PN depletion layer widening. Simulations of the 2 × 2 outputs versus voltage are presented. Dual-nanobeam designs are given for N × N data-routing matrix switches, electrooptical logic unit cells, N × M wavelength selective switches, and vector matrix multipliers. Performance penalties are analyzed for possible fabrication induced errors such as non-ideal 3-dB couplers, differences in optical path lengths, and variations in photonic crystal cavity resonances.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation

Joshua Hendrickson, Richard Soref, Julian Sweet, and Walter Buchwald
Opt. Express 22(3) 3271-3283 (2014)

Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region

Richard Soref, Joshua R. Hendrickson, and Julian Sweet
Opt. Express 24(9) 9369-9382 (2016)

Mach-Zehnder crossbar switching and tunable filtering using N-coupled waveguide Bragg resonators

Richard A. Soref, Francesco De Leonardis, and Vittorio M. N. Passaro
Opt. Express 26(12) 14959-14971 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
    [Crossref] [PubMed]
  2. A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
    [Crossref] [PubMed]
  3. A. Shakoor, K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “Ultra-low energy 1D silicon photonic cystal electro-optic modulator with sub-100-mV switching voltage,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper IW3A.6.
  4. M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
    [Crossref]
  5. R. Soref, J. Guo, and G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express 19(19), 18122–18134 (2011).
    [Crossref] [PubMed]
  6. Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).
  7. B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
    [Crossref]
  8. D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
    [Crossref]
  9. C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
    [Crossref]
  10. R. Soref, “Semiconductor photonic nano communication link apparatus,” U.S. Patent 7,603,016 (13 October 2009).
  11. R. Soref, “Semiconductor photonic nano communication link method,” U.S. Patent 7,907,848 (15 March 2011).
  12. J. Sweet, J. Hendrickson, and R. Soref, “Ultralow switching energy germanium electro-optical modulator,” in Frontiers in Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTu1D.5.
  13. D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
    [Crossref]
  14. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  15. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
    [Crossref] [PubMed]
  16. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
    [Crossref] [PubMed]
  17. Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
    [Crossref] [PubMed]
  18. C. Qiu, W. Gao, R. Soref, J. T. Robinson, and Q. Xu, “Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators,” Opt. Lett. 39(24), 6767–6770 (2014).
    [Crossref] [PubMed]
  19. Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper IT4A.3.
  20. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  21. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  22. D. Mechin, P. Yvernault, L. Brilland, and D. Pureur, “Influence of Bragg Gratings Phase Mismatch in a Mach-Zehnder-Based Add-Drop Multiplexer,” J. Lightwave Technol. 21(5), 1411–1416 (2003).
    [Crossref]

2015 (4)

M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

2014 (6)

2013 (1)

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

2011 (4)

2010 (1)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

2003 (1)

Alipour-Banei, H.

M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Andalib, A.

M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Bergman, K.

Brilland, L.

Buchwald, W.

Calhoun, D.

Chiba, T.

Cong, G.

Cui, K. Y.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Deng, C. S.

C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Ding, W.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Ebrahimy, M. N.

M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Feng, X.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Gao, W.

Gao, Y. S.

C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
[Crossref]

Guo, J.

Hendrickson, J.

Hendry, R.

Hu, Y. H.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Huang, Y. D.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Igarashi, Y.

Ikeda, K.

Jiang, X.

B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Kawashima, H.

Kim, S.-H.

Kimura, T.

Koshino, K.

Kuramochi, E.

Li, M. J.

C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
[Crossref]

Li, Q.

Li, Y. Z.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Li, Z. Y.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Liu, F.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Marris-Morini, D.

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Masahara, M.

Matsukawa, T.

Matsumaro, K.

Mechin, D.

Meng, Z. M.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Namiki, S.

Nikolova, D.

Nishiguchi, K.

Notomi, M.

Nozaki, K.

Ohno, M.

Ohtsuka, M.

Orafei, H.

M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Ortega-Monux, A.

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Perez-Galacho, D.

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Pureur, D.

Qi, B.

B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Qiu, C.

Quan, Q.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Robinson, J. T.

Rumley, S.

Samadi, P.

Seki, M.

Shakoor, A.

Shinya, A.

Soref, R.

Suda, S.

Sugaya, T.

Sun, G.

Suzuki, K.

Sweet, J.

Tadokoro, H.

Tanizawa, K.

Toyama, M.

Vivien, L.

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Wang, C.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Wang, D.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Wanguement-Perez, J.

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

Wu, X. Z.

C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
[Crossref]

Xu, Q.

Yanagihara, M.

Yang, J.

B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yang, M.

B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yokoyama, N.

Yu, P.

B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

Yvernault, P.

Zhang, W.

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Zhong, J. X.

C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
[Crossref]

Zhong, X. L.

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Appl. Phys. Lett. (1)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Chin. Phys. B (1)

D. Wang, K. Y. Cui, X. Feng, Y. D. Huang, Y. Z. Li, F. Liu, and W. Zhang, “Horizontally slotted photonic crystal nanobeam cavity with embedded active nanopillars for ultrafast direct modulation,” Chin. Phys. B 22(9), 094209 (2013).
[Crossref]

Europhys. Lett. (1)

C. S. Deng, Y. S. Gao, X. Z. Wu, M. J. Li, and J. X. Zhong, “Ultrahigh-Q TE/TM dual-polarized photonic crystal holey fishbone-like nanobeam cavities,” Europhys. Lett. 108(5), 54006 (2014).
[Crossref]

IEEE Photonics J. (1)

D. Perez-Galacho, D. Marris-Morini, A. Ortega-Monux, J. Wanguement-Perez, and L. Vivien, “Add/drop mode-division multiplexer based on a Mach-Zehnder interferometer and periodic waveguides,” IEEE Photonics J. 7(4), 7800907 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Qi, P. Yu, X. Jiang, M. Yang, and J. Yang, “Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity,” IEEE Photonics Technol. Lett. 23(14), 992–994 (2011).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (8)

Q. Xu and R. Soref, “Reconfigurable optical directed-logic circuits using microresonator-based optical switches,” Opt. Express 19(6), 5244–5259 (2011).
[Crossref] [PubMed]

R. Soref, J. Guo, and G. Sun, “Low-energy MOS depletion modulators in silicon-on-insulator micro-donut resonators coupled to bus waveguides,” Opt. Express 19(19), 18122–18134 (2011).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

J. Hendrickson, R. Soref, J. Sweet, and W. Buchwald, “Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation,” Opt. Express 22(3), 3271–3283 (2014).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, and M. Notomi, “Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy,” Opt. Express 22(23), 28623–28634 (2014).
[Crossref] [PubMed]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23(2), 1159–1175 (2015).
[Crossref] [PubMed]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23(13), 17599–17606 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Photon. Nanostructures (1)

Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavites for low power and ultrafast all-optical switching,” Photon. Nanostructures 12(1), 83–92 (2014).

Physica E (1)

M. N. Ebrahimy, H. Orafei, A. Andalib, and H. Alipour-Banei, “Low power electro-optical filter: constructed using silicon nanobeam resonator and PIN junction,” Physica E 70, 40–45 (2015).
[Crossref]

Other (5)

Z. Su, E. Timurdogan, M. Moresco, G. Leake, D. D. Coolbaugh, and M. R. Watts, “Wavelength routing and multicasting network in ring-based integrated photonics,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper IT4A.3.

A. Shakoor, K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “Ultra-low energy 1D silicon photonic cystal electro-optic modulator with sub-100-mV switching voltage,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper IW3A.6.

R. Soref, “Semiconductor photonic nano communication link apparatus,” U.S. Patent 7,603,016 (13 October 2009).

R. Soref, “Semiconductor photonic nano communication link method,” U.S. Patent 7,907,848 (15 March 2011).

J. Sweet, J. Hendrickson, and R. Soref, “Ultralow switching energy germanium electro-optical modulator,” in Frontiers in Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper FTu1D.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Physical layout of air holes (upper) and intensity profile of fundamental TE mode (lower).
Fig. 2
Fig. 2 Waveguide layout of dual nanobeam (DNB) 2 × 2 EO switch.
Fig. 3
Fig. 3 A waveguided version of Fig. 1 that employs multimode couplers instead of 3-dB directional couplers.
Fig. 4
Fig. 4 Calculated EO 2 × 2 performance for input-to-through and input-to-drop at Lm = 2 μm.
Fig. 5
Fig. 5 Functional diagram of the wavelength-selective switch in Figs. 2 and 3 in its cross and its bar states.
Fig. 6
Fig. 6 Waveguide-connected architecture of the 8 × 8 strictly nonblocking path-independent loss network switch.
Fig. 7
Fig. 7 Waveguide-connected architecture of the 8 × 8 Benes network switch.
Fig. 8
Fig. 8 Layout of DNB PILOSS 4 × 4 router with the electro-optical control leads for each PN dual-NB indicated as a wire pair fanned out to the side.
Fig. 9
Fig. 9 An array of four 2 × 2 DNBs with their V1 resonances spaced 3 nm apart. The collective switching response to four color inputs is shown.
Fig. 10
Fig. 10 Wavelength routing properties of the λ2-resonant 2 × 2 DNB (in its cross and bar states) for four wavelengths at the input port, plus two different wavelengths put in at the add port.
Fig. 11
Fig. 11 Wavelength-selective switching by an array of interconnected 2 × 2 DNBs that routes three input colors in any chosen combination to each of three ports.
Fig. 12
Fig. 12 Vector matrix multiplication by an array of waveguide-connected 2 × 2 DNBs. The matrix weighting A of three electrically modulated color-coded inputs (electric vector input B) results in an output electric vector C as illustrated.
Fig. 13
Fig. 13 Wavelength-multiplexed N × N optical crossbar matrix switch.
Fig. 14
Fig. 14 SOI waveguide layout of the electro-optical logic unit cell for computing universal logic functions. The cell is constructed entirely of 2 × 2 DNBs and 1 × 1 passive NB pass or block filter.
Fig. 15
Fig. 15 Insertion loss and crosstalk at three ports of the non-ideal 2 × 2 as a function of non-ideal coupling ratio in the second hybrid coupler. The first hybrid coupler is fixed at 3-dB.
Fig. 16
Fig. 16 Insertion loss and crosstalk at three ports of the non-ideal 2 × 2 as a function of the optical phase difference between the two waveguided arms of the MZI device.
Fig. 17
Fig. 17 Insertion loss and crosstalk at three ports of the non-ideal 2 × 2 as a function of the wavelength difference between the fundamental resonance-wavelength of each nanobeam.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( A 11 A 12 A 12 A 21 A 22 A 23 A 31 A 32 A 33 )( B 1 B 2 B 3 )=( C 1 C 2 C 3 )

Metrics