Abstract

In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power dual-wavelength lasing in bimodal-sized InGaAs/GaAs quantum dots

Yinli Zhou, Jian Zhang, Yongqiang Ning, Yugang Zeng, Jianwei Zhang, Xing Zhang, Li Qin, Cunzhu Tong, Yun Liu, and Lijun Wang
Opt. Express 24(25) 29321-29328 (2016)

Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure

Xinkun Li, Peng Jin, Qi An, Zuocai Wang, Xueqin Lv, Heng Wei, Jian Wu, Ju Wu, and Zhanguo Wang
Opt. Express 20(11) 11936-11943 (2012)

High-power quantum-dot superluminescent tapered diode under CW operation

Adam F. Forrest, Michel Krakowski, Paolo Bardella, and Maria Ana Cataluna
Opt. Express 27(8) 10981-10990 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
    [Crossref]
  2. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-Home Services Based on Wavelength-Division-Multiplexing Passive Optical Network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
    [Crossref]
  3. K. H. Yoon, S. H. Oh, K. S. Kim, O. K. Kwon, D. K. Oh, Y. O. Noh, and H. J. Lee, “2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector,” Opt. Express 18(6), 5556–5561 (2010).
    [Crossref] [PubMed]
  4. M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
    [Crossref]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  6. Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11(12), 1411–1417 (2003).
    [Crossref] [PubMed]
  7. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
    [Crossref] [PubMed]
  8. S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).
  9. M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
    [Crossref]
  10. H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
    [Crossref]
  11. Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
    [Crossref]
  12. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
    [Crossref]
  13. S. Haffouz, P. J. Barrios, R. Normandin, D. Poitras, and Z. Lu, “Ultrawide-bandwidth, superluminescent light-emitting diodes using InAs quantum dots of tuned height,” Opt. Lett. 37(6), 1103–1105 (2012).
    [Crossref] [PubMed]
  14. X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
    [Crossref] [PubMed]
  15. M. Z. Khan, M. A. Majid, T. K. Ng, D. Cha, and B. S. Ooi, “Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm,” Opt. Lett. 38(19), 3720–3723 (2013).
    [Crossref] [PubMed]
  16. J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
    [Crossref]
  17. J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
    [Crossref]
  18. H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
    [Crossref]
  19. G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
    [Crossref]
  20. S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
    [Crossref]
  21. B. Bhavtosh, “A model for the temperature dependence of photoluminescence from self-assembled quantum dots,” J. Appl. Phys. 100(9), 093107 (2006).
    [Crossref]
  22. G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
    [Crossref]
  23. T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
    [Crossref]
  24. G. Saint-Girons and I. Sagnes, “Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening,” J. Appl. Phys. 91(12), 10115 (2002).
    [Crossref]
  25. W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
    [Crossref]
  26. G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
    [Crossref]
  27. H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
    [Crossref]
  28. S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
    [Crossref]
  29. C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
    [Crossref]
  30. S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
    [Crossref]

2015 (1)

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

2014 (1)

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

2013 (2)

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

M. Z. Khan, M. A. Majid, T. K. Ng, D. Cha, and B. S. Ooi, “Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm,” Opt. Lett. 38(19), 3720–3723 (2013).
[Crossref] [PubMed]

2012 (4)

S. Haffouz, P. J. Barrios, R. Normandin, D. Poitras, and Z. Lu, “Ultrawide-bandwidth, superluminescent light-emitting diodes using InAs quantum dots of tuned height,” Opt. Lett. 37(6), 1103–1105 (2012).
[Crossref] [PubMed]

X. Li, P. Jin, Q. An, Z. Wang, X. Lv, H. Wei, J. Wu, J. Wu, and Z. Wang, “Experimental investigation of wavelength-selective optical feedback for a high-power quantum dot superluminescent device with two-section structure,” Opt. Express 20(11), 11936–11943 (2012).
[Crossref] [PubMed]

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

2010 (1)

2009 (1)

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

2006 (3)

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[Crossref]

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

B. Bhavtosh, “A model for the temperature dependence of photoluminescence from self-assembled quantum dots,” J. Appl. Phys. 100(9), 093107 (2006).
[Crossref]

2005 (2)

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

2004 (3)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-Home Services Based on Wavelength-Division-Multiplexing Passive Optical Network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
[Crossref]

S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
[Crossref]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Y. Wang, J. Nelson, Z. Chen, B. Reiser, R. Chuck, and R. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express 11(12), 1411–1417 (2003).
[Crossref] [PubMed]

2002 (3)

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

G. Saint-Girons and I. Sagnes, “Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening,” J. Appl. Phys. 91(12), 10115 (2002).
[Crossref]

2001 (1)

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

2000 (1)

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

1999 (1)

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

1998 (2)

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
[Crossref]

1997 (1)

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

1983 (1)

W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Ahn, J.-G.

Ahopelto, J.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Alén, B.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Alhashim, H. H.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

An, Q.

Barrios, P. J.

Bayleyegn, M. D.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Beirne, G. J.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Bhattacharya, P. K.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Bhavtosh, B.

B. Bhavtosh, “A model for the temperature dependence of photoluminescence from self-assembled quantum dots,” J. Appl. Phys. 100(9), 093107 (2006).
[Crossref]

Bommer, M.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Burns, W. K.

W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Canet-Ferrer, J.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Cha, D.

Chen, C.

W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Chen, S.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Chen, W.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Chen, Z.

Childs, D. T. D.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Choe, J. W.

S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
[Crossref]

Chua, S. J.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[Crossref]

Chuck, R.

Coelho, J.

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Crotti, C.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

de Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Ding, D.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Ding, Y.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Dubois, A.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Fan, W. J.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[Crossref]

Feldmann, J.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fiore, A.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Frigeri, P.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Gérard, J. M.

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Gong, Q.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Grosse, S.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Haffouz, S.

Han, I. K.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Hitzenberge, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hogg, R. A.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Hugues, M.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Jeong, K.-T.

Jetter, M.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Jin, P.

Johansson, J.

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
[Crossref]

Johnson, T. J.

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

Jung, S. I.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Junno, T.

J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
[Crossref]

Kan, Q.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Khan, M. Z.

Khan, M. Z. M.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

Kim, E. K.

S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
[Crossref]

Kim, J. S.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Kim, K.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Kim, K. S.

Kissel, H.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Kwon, O. K.

Largeau, L.

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, C.-H.

Lee, H.

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

Lee, H. J.

Lee, J. I.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Lee, S. J.

S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
[Crossref]

Leem, J. Y.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Li, L. H.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Li, X.

Lipsanen, H.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Lisitsa, M. P.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Lowe-Webb, R.

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

Lu, Z.

Lv, X.

Majid, M. A.

Makhlouf, H.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Martínez-Pastor, J.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Masselink, W. T.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Mazur, Y. I.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Mereuta, A.

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Michler, P.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Moeller, R. P.

W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

Moison, J. M.

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Müller, U.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Muñoz-Matutano, G.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Nelson, J.

Ng, T. K.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

M. Z. Khan, M. A. Majid, T. K. Ng, D. Cha, and B. S. Ooi, “Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm,” Opt. Lett. 38(19), 3720–3723 (2013).
[Crossref] [PubMed]

Ngo, C. Y.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[Crossref]

Noh, S. K.

S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
[Crossref]

Noh, Y. O.

Normandin, R.

Norris, T. B.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Occhi, L.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Oh, D. K.

Oh, S. H.

Ooi, B. S.

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

M. Z. Khan, M. A. Majid, T. K. Ng, D. Cha, and B. S. Ooi, “Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm,” Opt. Lett. 38(19), 3720–3723 (2013).
[Crossref] [PubMed]

Orchard, J. R.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Pan, J.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Park, B. H.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Park, H.-J.

Park, S.-J.

Patriarche, G.

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Plamann, K.

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Poitras, D.

Reischle, M.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Reiser, B.

Rivas, D.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Roßbach, R.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Rossetti, M.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

Sagnes, I.

G. Saint-Girons and I. Sagnes, “Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening,” J. Appl. Phys. 91(12), 10115 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Saint-Girons, G.

G. Saint-Girons and I. Sagnes, “Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening,” J. Appl. Phys. 91(12), 10115 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Samuelson, L.

J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
[Crossref]

Sandmann, J. H. H.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Schulz, W. M.

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Seifert, W.

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
[Crossref]

Seravalli, L.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Sercel, P. C.

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

Singh, J.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Song, K.-H.

Sopanen, M.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

Suárez, I.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Sun, Z. Z.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Tarasov, G. G.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Trevisi, G.

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

Tulkki, J.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Urayama, J.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Velez, C.

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

von Plessen, G.

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

Wada, O.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Walther, C.

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

Wang, H.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Wang, W.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Wang, Y.

Wang, Z.

Wang, Z. G.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Wei, H.

Windeler, R.

Wu, J.

Wu, Z. K.

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Xu, B.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Yang, W.

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

Yeo, H. Y.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Yoon, K. H.

Yoon, S. F.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[Crossref]

Yu, H.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Yuan, L.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Yun, I.

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Zhang, Z.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Zhou, K.

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

Zhou, W.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Zhou, X.

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

Appl. Phys. Lett. (3)

H. Wang, H. Yu, X. Zhou, Q. Kan, L. Yuan, W. Chen, W. Wang, Y. Ding, and J. Pan, “High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission,” Appl. Phys. Lett. 105(14), 141101 (2014).
[Crossref]

H. Lee, R. Lowe-Webb, T. J. Johnson, W. Yang, and P. C. Sercel, “Photoluminescence study of in situ annealed InAs quantum dots: Double-peak emission associated with bimodal size distribution,” Appl. Phys. Lett. 73(24), 3556–3558 (1998).
[Crossref]

G. Saint-Girons, G. Patriarche, L. Largeau, J. Coelho, A. Mereuta, J. M. Moison, J. M. Gérard, and I. Sagnes, “Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 79(14), 2157–2159 (2001).
[Crossref]

Electron. Lett. (1)

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett. 41(1), 41–43 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum (1)

S. Chen, K. Zhou, Z. Zhang, J. R. Orchard, D. T. D. Childs, M. Hugues, O. Wada, and R. A. Hogg, “Hybrid quantum well quantum dot structure for broad spectral bandwidth emitters,” IEEE J. Sel. Top. Quantum 19(4), 1900209 (2013).

IEEE Photonics J. (1)

M. Z. M. Khan, H. H. Alhashim, T. K. Ng, and B. S. Ooi, “High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultrawide emission bandwidth,” IEEE Photonics J. 7(1), 1–8 (2015).
[Crossref]

J. Appl. Phys. (4)

G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, “Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots,” J. Appl. Phys. 91(6), 3859–3863 (2002).
[Crossref]

B. Bhavtosh, “A model for the temperature dependence of photoluminescence from self-assembled quantum dots,” J. Appl. Phys. 100(9), 093107 (2006).
[Crossref]

G. Muñoz-Matutano, I. Suárez, J. Canet-Ferrer, B. Alén, D. Rivas, L. Seravalli, G. Trevisi, P. Frigeri, and J. Martínez-Pastor, “Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots,” J. Appl. Phys. 111(12), 123522 (2012).
[Crossref]

G. Saint-Girons and I. Sagnes, “Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening,” J. Appl. Phys. 91(12), 10115 (2002).
[Crossref]

J. Cryst. Growth (3)

S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, “Evolution of bimodal size-distribution on InAs coverage variation in as-grown InAs/GaAs quantum-dot heterostructures,” J. Cryst. Growth 267(3–4), 405–411 (2004).
[Crossref]

J. Johansson, W. Seifert, T. Junno, and L. Samuelson, “Sizes of self-assembled quantum dots—effects of deposition conditions and annealing,” J. Cryst. Growth 195(1–4), 546–551 (1998).
[Crossref]

J. Johansson and W. Seifert, “Kinetics of self-assembled island formation: Part II–Island size,” J. Cryst. Growth 234(1), 139–144 (2002).
[Crossref]

J. Invest. Dermatol. (1)

M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, “Advances in optical coherence tomography imaging for dermatology,” J. Invest. Dermatol. 123(3), 458–463 (2004).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

W. K. Burns, C. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983).
[Crossref]

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-Home Services Based on Wavelength-Division-Multiplexing Passive Optical Network,” J. Lightwave Technol. 22(11), 2582–2591 (2004).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. B. Norris, K. Kim, J. Urayama, Z. K. Wu, J. Singh, and P. K. Bhattacharya, “Density and temperature dependence of carrier dynamics in self-organized InGaAs quantum dots,” J. Phys. D Appl. Phys. 38(13), 2077–2087 (2005).
[Crossref]

Opt. Commun. (1)

M. D. Bayleyegn, H. Makhlouf, C. Crotti, K. Plamann, and A. Dubois, “Ultrahigh resolution spectral-domain optical coherence tomography at 1.3μm using a broadband superluminescent diode light source,” Opt. Commun. 285(24), 5564–5569 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[Crossref]

Phys. Rev. B (4)

H. Kissel, U. Müller, C. Walther, W. T. Masselink, Y. I. Mazur, G. G. Tarasov, and M. P. Lisitsa, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage,” Phys. Rev. B 62(11), 7213–7218 (2000).
[Crossref]

S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: Scattering mechanisms and state-filling effects,” Phys. Rev. B 55(7), 4473–4476 (1997).
[Crossref]

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[Crossref]

W. M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in(AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79(3), 035329 (2009).
[Crossref]

Physica E (1)

S. I. Jung, H. Y. Yeo, I. Yun, J. Y. Leem, I. K. Han, J. S. Kim, and J. I. Lee, “Photoluminescence study on the growth of self-assembled InAs quantum dots: formation characteristics of bimodal-sized quantum dots,” Physica E 33(1), 280–283 (2006).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberge, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The epitaxial structure of the SLD.
Fig. 2
Fig. 2 (a) AFM image of uncapped samples. Size distribution of (b) height and (c) base area of QD sample.
Fig. 3
Fig. 3 (a) Intensity dependent PL of the full SLD structure which contains five QD layers and the sample contains one QD layer. (b) EL spectrum measured from the fabricated 8µm ridge width QD SLD at different inject current under pulsed condition. (c) Illustrating of Gaussian fitting of the EL curve at current of 40 mA. (d) Variation of the fitting peak position obtained from the fitting of the EL curve at different current.
Fig. 4
Fig. 4 (a) Room temperature CW emission spectrum at different injection current (b) Changes in power and bandwidth with injection current of the fabricated 90µm ridge width QD-SLD device.
Fig. 5
Fig. 5 (a) Variation of peak wavelength and peak intensity. (b) Intensity variation of some particular wavelength with the injection current of the QD-SLD under CW condition at room temperature.
Fig. 6
Fig. 6 Energy band model sketch of the bimodal-sized QD SLD showing the dominant emissions from large dot (LD) and small dot (SD) ensemble at (a) low, (b) moderate, and (c) high injection current. Blue and olive colors correspond to the available states of the LD group and SD group, while black, red, and blue arrows correspond to the carrier injection, carrier thermal escape, and carrier retrapping, respectively.

Metrics