Abstract

Through-focus scanning optical microscopy (TSOM) method based on use of a library, which is composed of simulated defocused images of nanosized silicon lines on the top of a monocrystalline silicon substrate, is demonstrated. The images are simulated using Finite-Differences in Time-Domain (FDTD) method taking into account optical aberrations of the experimental setup, which are measured experimentally. Consideration of the optical aberrations allows us to reduce the discrepancy between experimental and simulated defocused images of the samples under study to the value of ≈2%in contrast to ≈10% when the aberrations are not taken into account. It results in ≈5% recognition accuracy for critical dimension (CD) values in the range 40-150 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Motion-free all optical inspection system for nanoscale topology control

Maxim Ryabko, Sergey Koptyaev, Alexander Shcherbakov, Alexey Lantsov, and S. Y. Oh
Opt. Express 22(12) 14958-14963 (2014)

Parameter optimization for through-focus scanning optical microscopy

Ravi Kiran Attota and Hyeonggon Kang
Opt. Express 24(13) 14915-14924 (2016)

Through-focus scanning optical microscopy with the Fourier modal method

Shin-woong Park, Gyunam Park, Youngbaek Kim, Joong Hwee Cho, Junho Lee, and Hwi Kim
Opt. Express 26(9) 11649-11657 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
    [Crossref]
  2. C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
    [Crossref]
  3. R. J. Hoobler and E. Apak, “Optical critical dimension (OCD) measurements for profile monitoring and control: applications for mask inspection and fabrication,” Proc. SPIE 5256, 638–645 (2003).
    [Crossref]
  4. R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
    [Crossref]
  5. R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
    [Crossref]
  6. R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
    [Crossref]
  7. R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
    [Crossref] [PubMed]
  8. M. Ryabko, S. Koptyaev, A. Shcherbakov, A. Lantsov, and S. Y. Oh, “Motion-free all optical inspection system for nanoscale topology control,” Opt. Express 22(12), 14958–14963 (2014).
    [Crossref] [PubMed]
  9. M. V. Ryabko, S. N. Koptyaev, A. V. Shcherbakov, A. D. Lantsov, and S. Y. Oh, “Method for optical inspection of nanoscale objects based upon analysis of their defocused images and features of its practical implementation,” Opt. Express 21(21), 24483–24489 (2013).
    [Crossref] [PubMed]
  10. D. Malacara, “Twyman–Green Interferometer,“in Optical Shop Testing, D. Malacara ed. (John Wiley & Sons, Inc., 2007), pp. 46-95.
  11. A. V. Arecchi, T. Messadi, and R. J. Koshel, Field Guide to Illumination (SPIE Press, 2007).
  12. P. Hariharan, Basics of Interferometry (Academic Press, 2006).
  13. C.-J. Kim and R. R. Shannon, “Catalog of Zernike polynomials,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wynant, eds, (Academic Press, 1987), pp. 193–221.
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc, 2005).

2014 (1)

2013 (1)

2008 (1)

2006 (1)

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
[Crossref]

2003 (3)

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

R. J. Hoobler and E. Apak, “Optical critical dimension (OCD) measurements for profile monitoring and control: applications for mask inspection and fabrication,” Proc. SPIE 5256, 638–645 (2003).
[Crossref]

2002 (1)

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

2001 (1)

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
[Crossref]

Apak, E.

R. J. Hoobler and E. Apak, “Optical critical dimension (OCD) measurements for profile monitoring and control: applications for mask inspection and fabrication,” Proc. SPIE 5256, 638–645 (2003).
[Crossref]

Attota, R.

R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
[Crossref] [PubMed]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
[Crossref]

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Bishop, M. R.

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
[Crossref]

Davidson, M.

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Davidson, M. P.

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Dixson, R. G.

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
[Crossref]

Elazami, A.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Fernand, C.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Germer, T. A.

Guevremont, M.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Henry, D.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Herisson, D.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Hoobler, R. J.

R. J. Hoobler and E. Apak, “Optical critical dimension (OCD) measurements for profile monitoring and control: applications for mask inspection and fabrication,” Proc. SPIE 5256, 638–645 (2003).
[Crossref]

Jun, J.

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Jun, J.-S. J.

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Koptyaev, S.

Koptyaev, S. N.

Kremer, S.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Lantsov, A.

Lantsov, A. D.

Larrabee, R.

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Larrabee, R. D.

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Littau, M.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
[Crossref]

Markle, R.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
[Crossref]

Marx, E.

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Neira, D.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Oh, S. Y.

Polli, M.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Purdy, M.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
[Crossref]

Raymond, C. J.

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
[Crossref]

Russo, B.

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Ryabko, M.

Ryabko, M. V.

Shcherbakov, A.

Shcherbakov, A. V.

Silver, R. M.

R. Attota, T. A. Germer, and R. M. Silver, “Through-focus scanning-optical-microscope imaging method for nanoscale dimensional analysis,” Opt. Lett. 33(17), 1990–1992 (2008).
[Crossref] [PubMed]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
[Crossref]

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Stocker, M.

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

Stocker, M. T.

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

Thony, P.

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (6)

D. Herisson, D. Neira, C. Fernand, P. Thony, D. Henry, S. Kremer, M. Polli, M. Guevremont, and A. Elazami, “Spectroscopic ellipsometry for lithography front-end level CD control: a complete analysis for production integration,” Proc. SPIE 5038, 264–273 (2003).
[Crossref]

C. J. Raymond, M. Littau, R. Markle, and M. Purdy, “Scatterometry for shallow trench isolation (STI) process metrology,” Proc. SPIE 4344, 716–725 (2001).
[Crossref]

R. J. Hoobler and E. Apak, “Optical critical dimension (OCD) measurements for profile monitoring and control: applications for mask inspection and fabrication,” Proc. SPIE 5256, 638–645 (2003).
[Crossref]

R. M. Silver, R. Attota, M. Stocker, J. Jun, E. Marx, R. Larrabee, B. Russo, and M. Davidson, “Comparison of measured optical image profiles of silicon lines with two different theoretical models,” Proc. SPIE 4689, 409–429 (2002).
[Crossref]

R. Attota, R. M. Silver, M. T. Stocker, E. Marx, J.-S. J. Jun, M. P. Davidson, and R. D. Larrabee, “A new method to enhance overlay tool performance,” Proc. SPIE 5038, 428–436 (2003).
[Crossref]

R. Attota, R. M. Silver, M. R. Bishop, and R. G. Dixson, “Optical critical dimension measurement and illumination analysis using the through-focus focus metric,” Proc. SPIE 6152, 61520K (2006).
[Crossref]

Other (5)

D. Malacara, “Twyman–Green Interferometer,“in Optical Shop Testing, D. Malacara ed. (John Wiley & Sons, Inc., 2007), pp. 46-95.

A. V. Arecchi, T. Messadi, and R. J. Koshel, Field Guide to Illumination (SPIE Press, 2007).

P. Hariharan, Basics of Interferometry (Academic Press, 2006).

C.-J. Kim and R. R. Shannon, “Catalog of Zernike polynomials,” in Applied Optics and Optical Engineering, R. R. Shannon and J. C. Wynant, eds, (Academic Press, 1987), pp. 193–221.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup, (b) SEM images of the test objects.
Fig. 2
Fig. 2 (a) Interference patterns at defined M2 mirror positions, (b) PSI-extracted optical phase distribution over objective pupil, (c) Aberration distribution φaber(kx,ky) over objective pupil fitted by 2D Zernike polynomials.
Fig. 3
Fig. 3 (a, b, c): CD = 40 nm, modeled TSOM image with the aberration correction, experimentally measured TSOM image and the intensity difference in %s, (d, e, f): CD = 90 nm, modeled TSOM image with aberration correction, experimentally measured TSOM image and the intensity difference in %s, (g, h, i): CD = 150 nm, modeled TSOM image with the aberration correction, experimentally measured TSOM image and intensity difference in %s.
Fig. 4
Fig. 4 The average simulation error for various nanostructure’s CD values with and without considering measured optical aberrations.
Fig. 5
Fig. 5 (a) Recognition results for the Si-lines samples with CD value in the range of 40-150 nm with using metric parameter calculation. Aberrations are taken into account in simulation, (b) CD-Metric sensitivity curves for experimental CD range 40-150 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I n (r,θ)= I 0 (r,θ)(1+γ(r,θ)cos(φ(r,θ)+ α n )),
( cos( α 2 )cos( α 1 ) sin( α 1 )sin( α 2 ) cos( α 3 )cos( α 2 ) ... sin( α 2 )sin( α 3 ) ... )( I 0 γ 0 cos(φ) I 0 γ 0 sin(φ) )=( I 2 I 1 I 3 I 2 ... )
Φ( k xy , z def )= 2π λ ( F+ Z def (1+cos(α)) (F+ Z def ) 2 Z def 2 sin 2 (α) ),
S def ( k x , k y ,Z)= S 0 ( k x , k y ) e i( k z *Z+ φ aber ( k x , k y )) ,
ER R nm =ER R metric /S

Metrics