Abstract

Programmable conductive patterns created by photoexcitation of semiconductor substrates using digital light processing (DLP) provides a versatile approach for spatial and temporal modulation of THz waves. The reconfigurable nature of the technology has great potential in implementing several promising THz applications, such as THz beam steering, THz imaging or THz remote sensing, in a simple, cost-effective manner. In this paper, we provide physical insight about how the semiconducting materials, substrate dimension, optical illumination wavelength and illumination size impact the performance of THz modulation, including modulation depth, modulation speed and spatial resolution. The analysis establishes design guidelines for the development of photo-induced THz modulation technology. Evolved from the theoretical analysis, a new mesa array technology composed by a matrix of sub-THz wavelength structures is introduced to maximize both spatial resolution and modulation depth for THz modulation with low-power photoexcitation by prohibiting the lateral diffusion of photogenerated carriers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator

David Shrekenhamer, Claire M. Watts, and Willie J. Padilla
Opt. Express 21(10) 12507-12518 (2013)

Ultrafast THz modulators with WSe2 thin films [Invited]

Prashanth Gopalan, Ashish Chanana, Sriram Krishnamoorthy, Ajay Nahata, Michael A. Scarpulla, and Berardi Sensale-Rodriguez
Opt. Mater. Express 9(2) 826-836 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  2. T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. IEEE 80(11), 1662–1678 (1992).
    [Crossref]
  3. A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
    [Crossref]
  4. E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).
  5. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
    [Crossref]
  6. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
    [Crossref] [PubMed]
  7. B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21(2), 2324–2330 (2013).
    [Crossref] [PubMed]
  8. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
    [Crossref] [PubMed]
  9. Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
    [Crossref] [PubMed]
  10. M. Rahm, J. Li, and W. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
    [Crossref]
  11. L.-J. Cheng and L. Liu, “Optical modulation of continuous THz waves: towards reconfigurable quasi-optical THz components,” Opt. Express 21(23), 28657–28667 (2013).
    [Crossref] [PubMed]
  12. A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
    [Crossref]
  13. M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
    [Crossref]
  14. G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
    [Crossref] [PubMed]
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  16. L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
    [Crossref]
  17. D. J. Benford, J. W. Kooi, and E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of Ninth International Symposium of Space Terahertz Technology (1998), pp. 405–413.
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academia, 1988).
  19. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
    [Crossref]
  20. S. M. Sze, Physics of Semiconductor Devices (Wiley Publishers, 1981).

2014 (3)

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

2011 (2)

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

2007 (1)

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

2006 (1)

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

2002 (1)

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

2000 (1)

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

1995 (1)

1992 (1)

T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. IEEE 80(11), 1662–1678 (1992).
[Crossref]

Bauhuis, G. J.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Benford, D. J.

D. J. Benford, J. W. Kooi, and E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of Ninth International Symposium of Space Terahertz Technology (1998), pp. 405–413.

Bonn, M.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Brown, E.

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

Cao, C.

Chen, C.-Y.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Chen, J.

Chen, Z.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Cheng, L.-J.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

L.-J. Cheng and L. Liu, “Optical modulation of continuous THz waves: towards reconfigurable quasi-optical THz components,” Opt. Express 21(23), 28657–28667 (2013).
[Crossref] [PubMed]

Dai, H.

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Fay, P.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

Gelmont, B.

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

Georgiou, G.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Globus, T.

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

Heilweil, E. J.

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Hsieh, C.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Hu, B. B.

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Jena, D.

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21(2), 2324–2330 (2013).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Jiang, Z.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

Jin, B.

Kang, L.

Kannegulla, A.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

Keene, J.

T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. IEEE 80(11), 1662–1678 (1992).
[Crossref]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Kooi, J. W.

D. J. Benford, J. W. Kooi, and E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of Ninth International Symposium of Space Terahertz Technology (1998), pp. 405–413.

Li, J.

M. Rahm, J. Li, and W. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Lichtenberger, A. W.

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

Lin, Y.-F.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Liu, L.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21(2), 2324–2330 (2013).
[Crossref] [PubMed]

L.-J. Cheng and L. Liu, “Optical modulation of continuous THz waves: towards reconfigurable quasi-optical THz components,” Opt. Express 21(23), 28657–28667 (2013).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

Liu, W.-W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Mao, Q.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Markelz, A.

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Mulder, P.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Nuss, M. C.

Padilla, W.

M. Rahm, J. Li, and W. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Pan, C.-L.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Pan, R.-P.

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Phillips, T. G.

T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. IEEE 80(11), 1662–1678 (1992).
[Crossref]

Protasenko, V.

Qayyum, J.

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

Rafique, S.

Rahm, M.

M. Rahm, J. Li, and W. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Rahman, S.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

Rivas, J. G.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Roitberg, A.

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

Samuels, A.

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

Sanderson, M.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Schermer, J. J.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Schultz, J. C.

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21(2), 2324–2330 (2013).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Serabyn, E.

D. J. Benford, J. W. Kooi, and E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of Ninth International Symposium of Space Terahertz Technology (1998), pp. 405–413.

Shams, I.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

Shams, M. I. B.

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Tian, W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Tyagi, H. K.

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Weikle, R. M.

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

Wen, Q. Y.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Woolard, D.

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

Wu, J.

Wu, P.

Xiao, Q.

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

Xing, H. G.

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21(2), 2324–2330 (2013).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Xu, H.

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

Xu, W.

Xue, Y.

Yan, R.

B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, and H. G. Xing, “Terahertz imaging employing graphene modulator arrays,” Opt. Express 21(2), 2324–2330 (2013).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Yang, Q.-H.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Zhang, C.

Zhang, H.-W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

Zhang, L.

Zhu, M.

Appl. Phys. Lett. (1)

C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88(10), 101107 (2006).
[Crossref]

Chem. Phys. Lett. (1)

A. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000).
[Crossref]

IEEE MTT-S Int. Microw. Symp. Dig. (1)

E. Brown, D. Woolard, A. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in THz region,” IEEE MTT-S Int. Microw. Symp. Dig. 3, 1591–1594 (2002).

IEEE Trans. Appl. Supercond. (1)

L. Liu, Q. Xiao, H. Xu, J. C. Schultz, A. W. Lichtenberger, and R. M. Weikle, “Design, fabrication and characterization of a submillimeter-wave niobium HEB mixer imaging array based on the ‘reversed-microscope’ concept,” IEEE Trans. Appl. Supercond. 17(2), 407–411 (2007).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Kannegulla, Z. Jiang, S. Rahman, I. Shams, P. Fay, H. G. Xing, L.-J. Cheng, and L. Liu, “Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams,” IEEE Trans. Terahertz Sci. Technol. 4(3), 321–327 (2014).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

M. Rahm, J. Li, and W. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Nat. Commun. (1)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3, 780–787 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. IEEE 80(11), 1662–1678 (1992).
[Crossref]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83(2), 543–586 (2011).
[Crossref]

Sci. Rep. (2)

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4, 7409 (2014).
[Crossref] [PubMed]

G. Georgiou, H. K. Tyagi, P. Mulder, G. J. Bauhuis, J. J. Schermer, and J. G. Rivas, “Photo-generated THz antennas,” Sci. Rep. 4, 3584 (2014).
[Crossref] [PubMed]

Other (5)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

D. J. Benford, J. W. Kooi, and E. Serabyn, “Spectroscopic measurements of optical components around 1 terahertz,” in Proceedings of Ninth International Symposium of Space Terahertz Technology (1998), pp. 405–413.

E. D. Palik, Handbook of Optical Constants of Solids (Academia, 1988).

M. I. B. Shams, Z. Jiang, J. Qayyum, S. Rahman, P. Fay, and L. Liu, “A terahertz reconfigurable photo-induced Fresnel-zone-plate antenna for dynamic two-dimensional beam steering and forming,” in IEEE MTT-S International Microwave Symposium (IEEE, 2015), pp. 1–4.
[Crossref]

S. M. Sze, Physics of Semiconductor Devices (Wiley Publishers, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Setup for photo-induced THz modulation. (b) Schematic diagram for device modeling. (c) Schematic representation of the discretized refractive index profile used in the calculation of THz transmission by a Fresnel transfer matrix method.
Fig. 2
Fig. 2 Transmission and modulation depth of (a) Si, (b) Ge, and (c) GaAs substrates as functions of substrate thickness h up to 1 mm under illumination of continuous 550-nm light waves at various power densities.
Fig. 3
Fig. 3 Carrier concentration profiles in (a) Si, (b) Ge and (c) GaAs substrates with various thicknesses illuminated by continuous 550-nm light waves at a power density of 1 W/cm2. An equivalent 10kW/cm2 continuous wave illumination is applied for GaAs substrate.
Fig. 4
Fig. 4 Transmission spectra and modulation depth spectra of Si (a), Ge (b), and GaAs (c) substrates at THz range under various optical illumination power densities.
Fig. 5
Fig. 5 Transmission and modulation depth of a 590 GHz wave transmitted through 450-μm thick Si (a), 440-μm thick Ge (b) and 420-μm thick GaAs (c) substrates illuminated with various optical wavelengths and power densities.
Fig. 6
Fig. 6 (a) Temporal modulation of 590 GHz wave through Si, Ge and GaAs substrate using a pulsed optical illumination with a period of 20-fold carrier lifetime (20 τe) for each material. Transient response of carrier concentrations in 450 μm thick Si (a), 440 μm thick Ge (b) and 420 μm thick GaAs (c). Carrier concentration rises upon illumination at time t = 0-10 τe, and recovers after light is off from t = 10 to 20 τe. The carrier lifetimes τe used for calculation are 0.1 ms for Si, 1 ms for Ge, and 10 ns for GaAs.
Fig. 7
Fig. 7 (a) Carrier concentration profiles over the surface of Si, Ge and GaAs substrates. (b) 2D carrier distribution over the cross-sectional Si and Ge substrates illuminated by a 100-μm wide light beam. (c) Spatial distribution of 590 GHz transmission through Si, Ge and GaAs substrates under illumination of 550-nm, 1 W/cm2 continuous light waves for Si and Ge, and 10kW/cm2 for GaAs with various illumination widths in micrometer.
Fig. 8
Fig. 8 Maximum concentration of photogenerated carriers, transmission, and modulation depth in Si, Ge and GaAs substrates as functions of illumination width w. Illumination wavelength 550 nm, power density 1 W/cm2 for Si and Ge, and 10kW/cm2 for GaAs.
Fig. 9
Fig. 9 Transmission and maximal modulation depth of 590 GHz wave through Si (a), Ge (b) and GaAs (c) substrates as functions of illumination power density of 550 nm-light wave with various illumination width w. The asteriated curves represent the results of flat exposure.
Fig. 10
Fig. 10 (a) and (b) Cross-sectional carrier concentration profile over a 500 μm thick bare Si substrate and a mesa array Si substrate 0.01 ms after illuminated by a 25-μm wide light pattern from top. (c) and (d) Carrier concentration over the surface of a 70 μm × 110 μm bare Si substrate and mesa array substrate about 0.02 ms after illuminated a photopattern of alphabete letter “S”. Optical wavelength 550 nm; optical power density 1 W/cm2.

Tables (1)

Tables Icon

Table 1 Optical and electrical properties of intrinsic semiconductor substrates [18, 20].

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

N e t = D eff 2 N e N e τ e +g.
N e 2D (x,z)= 0 h w/2 w/2 g(η) D eff G(x,z,ξ,η)dξdη.
G(x,z,ξ,η)= 1 2π n= [ K 0 ( (xξ) 2 + [z(2nh+η)] 2 / L D ) + K 0 ( (xξ) 2 + [z(2nhη)] 2 / L D ) ].
N e 1D (z)= τ e α P o ω 1R 1 ( α L D ) 2 [ e αz α L D ( e z L D ( 1 e ( α+1/ L D )h 1 e 2h / L D ) e z L D ( 1 e ( α1/ L D )h 1 e 2h / L D ) ) ].
N e 1D (z) | L D h = τ e α P o (1R) ω 1 1 ( α L D ) 2 ( e αz α L D e z / L D ).
S T (t)= 1 2 + n=1 2 nπ sin( πn 2 )cos( 2πn T p t ).
N e 1Dt (z,t)= 0 t 0 h g(η) S T (τ) G t (z,η,tτ)dηdτ .
G t (z,η,t)= e t/ τ e [ 1 h + 2 h n=1 cos( nπz h ) cos( nπη h ) e D eff ( nπ h ) 2 t ].
ε re (x,z,ω)= N s q 2 ω 2 m e ( ω 4 + ω 2 γ e 2 ) ε 0 N s q 2 ω 2 m h ( ω 4 + ω 2 γ h 2 ) ε 0 + ε . ε im (x,z,ω)= N s q 2 ω γ e m e ( ω 4 + ω 2 γ e 2 ) ε 0 + N s q 2 ω γ h m h ( ω 4 + ω 2 γ h 2 ) ε 0 .
n 1 (x,z,ω)= ( ε re + ε re 2 + ε im 2 )/2 . κ 1 (x,z,ω)= ( ε re + ε re 2 + ε im 2 )/2 .
S=( S 11 S 12 S 21 S 22 )= I 01 j=1 m L j I j(j+1) .
I j(j+1) = 1 t j(j+1) ( 1 r j(j+1) r j(j+1) 1 ).
L j =( e i ϕ j 0 0 e i ϕ j ).
T= | 1 S 11 | 2 .

Metrics