Abstract

We propose an improved method to design freeform reflectors for architectural lighting: one for accent lighting and another for large area wall washing. The designed freeform reflectors effectively distribute light fluxes over the target surfaces, and generate appropriate illumination patterns for comfortable visual environments, which provides greater flexibility for lighting designs, allows many challenging designs, and improves energy-efficiency simultaneously.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast freeform reflector generation using source-target maps

Florian R. Fournier, William J. Cassarly, and Jannick P. Rolland
Opt. Express 18(5) 5295-5304 (2010)

Design of LED freeform optical system for road lighting with high luminance/illuminance ratio

Zexin Feng, Yi Luo, and Yanjun Han
Opt. Express 18(21) 22020-22031 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(3), A494–A502 (2013).
    [Crossref] [PubMed]
  2. J. C. Miñano and J. C. González, “New method of design of nonimaging concentrators,” Appl. Opt. 31(16), 3051–3060 (1992).
    [Crossref] [PubMed]
  3. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
    [Crossref] [PubMed]
  4. K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4), A830–A840 (2011).
    [Crossref] [PubMed]
  5. R. Zhu, Q. Hong, Y. Gao, Z. Luo, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Tailoring the light distribution of liquid crystal display with freeform engineered diffuser,” Opt. Express 23(11), 14070–14084 (2015).
    [Crossref] [PubMed]
  6. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  7. E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321(0), 78–85 (2014).
    [Crossref]
  8. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [Crossref] [PubMed]
  9. Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18(21), 22020–22031 (2010).
    [Crossref] [PubMed]
  10. G. Steffy, Architectural Lighting Design (Wiley, 2008).
  11. R. Whitehead, Residential Lighting: A Practical Guide (Wiley, 2004).
  12. D. Phillips, Lighting in Architectural Lighting (McGraw-Hill, 1964).
  13. C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express 20(4), 4050–4055 (2012).
    [Crossref] [PubMed]
  14. J.-J. Chen, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
    [Crossref]
  15. R. Wu, L. Xu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “Freeform illumination design: A nonlinear boundary problem for the elliptic Monge-Ampére equation,” Opt. Lett. 38(2), 229–231 (2013).
    [Crossref] [PubMed]
  16. C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Target flux estimation by calculating intersections between neighboring conic reflector patches,” Opt. Lett. 38(23), 5012–5015 (2013).
    [Crossref] [PubMed]
  17. D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett. 36(6), 918–920 (2011).
    [Crossref] [PubMed]
  18. S. A. Kochengin and V. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).
    [Crossref]
  19. T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).
    [Crossref]
  20. V. Oliker, “Mathematical aspects of design of beam shaping surfaces in geometrical optics,” in Trends in Nonlinear Analysis (Springer, 2003), pp. 193–224.
  21. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
    [Crossref]
  22. O. Marinescu and F. Bociort, “Network search method in the design of extreme ultraviolet lithographic objectives,” Appl. Opt. 46(35), 8385–8393 (2007).
    [Crossref] [PubMed]
  23. V. Oliker, “Freeform optical systems with prescribed irradiance properties in near-field,” Proc. SPIE 6342, 634211 (2006).
    [Crossref]
  24. P. Dutré, P. Bekaert, and K. Bala, Advanced Global Illumination, 2nd ed. (A K Peters/CRC Press, F.L., 2006).
  25. D. G. Koch, “Simplified irradiance/illuminance calculations in optical systems,” Proc. SPIE 1780, 226–240 (1993).
    [Crossref]
  26. R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics (Wiley, 2012).
  27. R. Wester, G. Müller, A. Völl, M. Berens, J. Stollenwerk, and P. Loosen, “Designing optical free-form surfaces for extended sources,” Opt. Express 22(S2Suppl 2), A552–A560 (2014).
    [Crossref] [PubMed]
  28. R. Wu, Y. Qin, H. Hua, Y. Meuret, P. Benítez, and J. C. Miñano, “Prescribed intensity design for extended sources in three-dimensional rotational geometry,” Opt. Lett. 40(9), 2130–2133 (2015).
    [Crossref] [PubMed]

2015 (2)

2014 (3)

2013 (3)

2012 (1)

2011 (2)

2010 (3)

2009 (1)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[Crossref]

2007 (1)

2006 (2)

2003 (1)

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).
[Crossref]

1997 (1)

S. A. Kochengin and V. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).
[Crossref]

1993 (1)

D. G. Koch, “Simplified irradiance/illuminance calculations in optical systems,” Proc. SPIE 1780, 226–240 (1993).
[Crossref]

1992 (1)

Avendaño-Alejo, M.

Benítez, P.

Berens, M.

Bociort, F.

Bräuer, A.

Buljan, M.

Canavesi, C.

Cassarly, W. J.

Chen, E.

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321(0), 78–85 (2014).
[Crossref]

Chen, F.

Chen, J.-J.

J.-J. Chen, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[Crossref]

Feng, Z.

Fournier, F. R.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[Crossref] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[Crossref]

Gao, Y.

Glimm, T.

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).
[Crossref]

González, J. C.

Guo, T.

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321(0), 78–85 (2014).
[Crossref]

Han, Y.

Hong, Q.

Hu, X.

Hua, H.

Koch, D. G.

D. G. Koch, “Simplified irradiance/illuminance calculations in optical systems,” Proc. SPIE 1780, 226–240 (1993).
[Crossref]

Kochengin, S. A.

S. A. Kochengin and V. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).
[Crossref]

Lee, S.-L.

Li, H.

Li, M.-C.

Liu, P.

Liu, S.

Liu, X.

Loosen, P.

Luo, X.

Luo, Y.

Luo, Z.

Marinescu, O.

Meuret, Y.

Michaelis, D.

Miñano, J. C.

Mohedano, R.

Moreno, I.

Müller, G.

Oliker, V.

V. Oliker, “Freeform optical systems with prescribed irradiance properties in near-field,” Proc. SPIE 6342, 634211 (2006).
[Crossref]

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).
[Crossref]

S. A. Kochengin and V. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).
[Crossref]

Qin, Y.

Qin, Z.

Rolland, J. P.

Santamaría, A.

Schreiber, P.

Stollenwerk, J.

Tsai, W.-C.

Tzonchev, R. I.

Völl, A.

Wang, K.

Wester, R.

Wu, D.

Wu, R.

Wu, S.-T.

Xu, L.

Zamora, P.

Zhang, Y.

Zheng, Z.

Zhu, R.

Appl. Opt. (3)

Inverse Probl. (1)

S. A. Kochengin and V. Oliker, “Determination of reflector surfaces from near-field scattering data,” Inverse Probl. 13(2), 363–373 (1997).
[Crossref]

J. Math. Sci. (1)

T. Glimm and V. Oliker, “Optical design of single reflector systems and the Monge–Kantorovich mass transfer problem,” J. Math. Sci. 117(3), 4096–4108 (2003).
[Crossref]

Opt. Commun. (1)

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321(0), 78–85 (2014).
[Crossref]

Opt. Eng. (1)

J.-J. Chen, “Freeform surface design for a light-emitting diode–based collimating lens,” Opt. Eng. 49(9), 093001 (2010).
[Crossref]

Opt. Express (8)

J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(3), A494–A502 (2013).
[Crossref] [PubMed]

C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express 20(4), 4050–4055 (2012).
[Crossref] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[Crossref] [PubMed]

Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18(21), 22020–22031 (2010).
[Crossref] [PubMed]

K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4), A830–A840 (2011).
[Crossref] [PubMed]

R. Zhu, Q. Hong, Y. Gao, Z. Luo, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “Tailoring the light distribution of liquid crystal display with freeform engineered diffuser,” Opt. Express 23(11), 14070–14084 (2015).
[Crossref] [PubMed]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

R. Wester, G. Müller, A. Völl, M. Berens, J. Stollenwerk, and P. Loosen, “Designing optical free-form surfaces for extended sources,” Opt. Express 22(S2Suppl 2), A552–A560 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Proc. SPIE (3)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[Crossref]

V. Oliker, “Freeform optical systems with prescribed irradiance properties in near-field,” Proc. SPIE 6342, 634211 (2006).
[Crossref]

D. G. Koch, “Simplified irradiance/illuminance calculations in optical systems,” Proc. SPIE 1780, 226–240 (1993).
[Crossref]

Other (6)

R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics (Wiley, 2012).

P. Dutré, P. Bekaert, and K. Bala, Advanced Global Illumination, 2nd ed. (A K Peters/CRC Press, F.L., 2006).

V. Oliker, “Mathematical aspects of design of beam shaping surfaces in geometrical optics,” in Trends in Nonlinear Analysis (Springer, 2003), pp. 193–224.

G. Steffy, Architectural Lighting Design (Wiley, 2008).

R. Whitehead, Residential Lighting: A Practical Guide (Wiley, 2004).

D. Phillips, Lighting in Architectural Lighting (McGraw-Hill, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Task area is divided into Nx and Ny rectangular meshes. Each mesh has a corresponding ellipsoid with one focal point on the origin O and the other on the mesh center mij. In any direction, the first ellipsoid surface intersecting the light ray reflects the light. The entire reflector combines a portion of every ellipsoid, and each piece belongs to the ellipsoid, which is the closest to the origin in that direction. The surface area of the ellipsoid piece determines the amount of flux that it collects.
Fig. 2
Fig. 2 (a) The projected solid angles of 25 × 25 ellipsoid patches, (b) the close-up view of four adjacent ellipsoid patches, and (c) the explanation of the four 3-ellipsoid intersection points.
Fig. 3
Fig. 3 (a) Illumination configuration of the freeform reflector for direct lighting, (b) the top view of the reflector, and (c) the illuminance distribution on the target plane.
Fig. 4
Fig. 4 (a) The packaging of a real LED CL-194S-WS, and (b) the real light illuminance distribution at the target plane because of the light blockage.
Fig. 5
Fig. 5 A freeform LED light consists of a freeform reflector, a hemispherical lens, and a point source LED. The hemispherical lens collimates the Lambertian light emission from LED to a smaller radiation cone so that LED does not block the reflected light ray.
Fig. 6
Fig. 6 (a) Illumination configuration of the freeform reflector for accent lighting, and (b) the simulated illuminance distribution on the target plane.
Fig. 7
Fig. 7 (a) Illuminance pattern of a single freeform wall washer; using the wall washers for large area wall washing with different spacing value Δy in the y direction (b) Δy = 0.8m (c) Δy = 0.9m and (d) Δy = 1.0m.
Fig. 8
Fig. 8 (a) Illuminance pattern of the freeform reflector for accent lighting when the point source is replaced by CL-194S-WS. (b) The packaging of Cree CXA2011. (c) The illuminance pattern of the freeform reflector for accent lighting when the point source is replaced by Cree CXA2011. (d) Using Cree CXA2011 for large area wall washing with an array of freeform reflectors designed for large area wall washing.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ(m)= a 2 c 2 acm· v ^ ,
d ij = 2 d 0 1 α 0 ( 1+ d 0 2 F 2 d 0 F ) .
u=max(| S ij T ij T ij |)<EPS,
E= LcosθdΩ= Lcosθsinθdθdϕ=Lω , ω= cosθsinθdθdϕ ,

Metrics