Abstract

Optical signal processing is considered to be a promising technique to overcome the speed limitation of electronics and accelerate next-generation high-speed optical networks. Among various optical signal processing operations, optical arithmetic functions have attracted increasing interest. Here, by exploiting the degenerate four-wave mixing progress in graphene and adopting (differential) quadrature phase-shift keying signals, we experimentally demonstrate 10 Gbaud two-input (A, B) hybrid quaternary arithmetic functions of doubling and subtraction (2A-B, 2B-A) in the optical domain. The measured optical signal-to-noise ratio penalties at a bit-error rate of 2 × 10−3 are about 7.4 dB for 2A-B and 7 dB for 2B-A.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-input optical addition and subtraction of quaternary base numbers

Jian Wang, Jeng-Yuan Yang, Hao Huang, and Alan E. Willner
Opt. Express 21(1) 488-499 (2013)

Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal

Xiao Hu, Mengqi Zeng, Andong Wang, Long Zhu, Lei Fu, and Jian Wang
Opt. Express 23(20) 26158-26167 (2015)

Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal

Xiao Hu, Yun Long, Mengxi Ji, Andong Wang, Long Zhu, Zhengsen Ruan, Yi Wang, and Jian Wang
Opt. Express 24(7) 7168-7177 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
    [Crossref] [PubMed]
  2. C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
    [Crossref]
  3. A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
    [Crossref]
  4. G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
    [Crossref]
  5. N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
    [Crossref]
  6. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
    [Crossref]
  7. Y. Xie, Y. Gao, S. Gao, X. Mou, and S. He, “All-optical multiple-channel logic XOR gate for NRZ-DPSK signals based on nondegenerate four-wave mixing in a silicon waveguide,” Opt. Lett. 36(21), 4260–4262 (2011).
    [Crossref] [PubMed]
  8. J. Wang, J.-Y. Yang, X. X. Wu, and A. E. Willner, “Optical hexadecimal coding/decoding using 16-QAM signal and FWM in HNLFs,” J. Lightwave Technol. 30(17), 2890–2900 (2012).
    [Crossref]
  9. S. H. Kim, J. H. Kim, J. W. Choi, C. W. Son, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical half adder using cross gain modulation in semiconductor optical amplifiers,” Opt. Express 14(22), 10693–10698 (2006).
    [Crossref] [PubMed]
  10. M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 23(10), 615–617 (2011).
    [Crossref]
  11. J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
    [Crossref]
  12. J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282(13), 2615–2619 (2009).
    [Crossref]
  13. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
    [Crossref] [PubMed]
  14. J. Wang, Q. Z. Sun, and J. Q. Sun, “Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate,” J. Opt. Soc. Am. B 26(5), 951–958 (2009).
    [Crossref]
  15. F. Li, T. D. Vo, C. Husko, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, B. J. Eggleton, and D. J. Moss, “All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire,” Opt. Express 19(21), 20364–20371 (2011).
    [Crossref] [PubMed]
  16. H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Four-wave mixing in slow-light graphene-silicon photonic crystal waveguides,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper FF1K.8.
    [Crossref]
  17. B. Xu, A. Martinez, K. Fuse, and S. Yamashita, “Generation of four wave mixing in graphene and carbon nanotubes optically deposited onto fiber ferrules,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMAA6.
    [Crossref]
  18. Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
    [Crossref]
  19. B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
    [Crossref]
  20. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
    [Crossref]
  21. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  22. D. Basko, “Applied physics. A photothermoelectric effect in graphene,” Science 334(6056), 610–611 (2011).
    [Crossref] [PubMed]
  23. L. Wang, W. Cai, X. Zhang, and J. Xu, “Surface plasmons at the interface between graphene and Kerr-type nonlinear media,” Opt. Lett. 37(13), 2730–2732 (2012).
    [Crossref] [PubMed]
  24. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref] [PubMed]
  25. M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer, 2009).
  26. J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010).
    [Crossref] [PubMed]
  27. J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express 19(19), 18246–18252 (2011).
    [Crossref] [PubMed]
  28. E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
    [Crossref]
  29. C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4, 7491 (2014).
    [Crossref] [PubMed]
  30. K. Yan, L. Fu, H. Peng, and Z. Liu, “Designed CVD growth of graphene via process engineering,” Acc. Chem. Res. 46(10), 2263–2274 (2013).
    [Crossref] [PubMed]
  31. X. Hu, M. Zeng, A. Wang, L. Zhu, L. Fu, and J. Wang, “Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal,” Opt. Express 23(20), 26158–26167 (2015).
    [Crossref] [PubMed]
  32. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4, 7491 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

2013 (1)

K. Yan, L. Fu, H. Peng, and Z. Liu, “Designed CVD growth of graphene via process engineering,” Acc. Chem. Res. 46(10), 2263–2274 (2013).
[Crossref] [PubMed]

2012 (5)

L. Wang, W. Cai, X. Zhang, and J. Xu, “Surface plasmons at the interface between graphene and Kerr-type nonlinear media,” Opt. Lett. 37(13), 2730–2732 (2012).
[Crossref] [PubMed]

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

J. Wang, J.-Y. Yang, X. X. Wu, and A. E. Willner, “Optical hexadecimal coding/decoding using 16-QAM signal and FWM in HNLFs,” J. Lightwave Technol. 30(17), 2890–2900 (2012).
[Crossref]

2011 (6)

2010 (5)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010).
[Crossref] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
[Crossref]

2009 (3)

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (3)

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

S. H. Kim, J. H. Kim, J. W. Choi, C. W. Son, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, “All-optical half adder using cross gain modulation in semiconductor optical amplifiers,” Opt. Express 14(22), 10693–10698 (2006).
[Crossref] [PubMed]

1999 (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

1993 (1)

S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Basko, D.

D. Basko, “Applied physics. A photothermoelectric effect in graphene,” Science 334(6056), 610–611 (2011).
[Crossref] [PubMed]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Berrettini, G.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Bogoni, A.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
[Crossref]

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Byun, Y. T.

Cai, W.

Chan, C. K.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

Chan, K.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

Chen, L. K.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

Chen, L. R.

J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Cheng, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Chiang, K. S.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Choi, J. W.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Deng, N.

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

Densmore, A.

Eggleton, B. J.

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Fu, L.

Gao, S.

Gao, Y.

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gong, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Gui, C.

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4, 7491 (2014).
[Crossref] [PubMed]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

He, S.

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Hu, X.

Huang, H.

Husko, C.

Ichihashi, T.

S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Iijima, S.

S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Janz, S.

Jhon, Y. M.

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Kim, J. H.

Kim, S. H.

Kishi, N.

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 23(10), 615–617 (2011).
[Crossref]

Lazzeri, E.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Lee, S.

Li, F.

Liu, Z.

K. Yan, L. Fu, H. Peng, and Z. Liu, “Designed CVD growth of graphene via process engineering,” Acc. Chem. Res. 46(10), 2263–2274 (2013).
[Crossref] [PubMed]

Ma, R.

Malacarne, A.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Martinez, A.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

Matsuura, M.

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 23(10), 615–617 (2011).
[Crossref]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Moss, D. J.

Mou, X.

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nuccio, S. R.

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010).
[Crossref] [PubMed]

Pelusi, M.

Peng, H.

K. Yan, L. Fu, H. Peng, and Z. Liu, “Designed CVD growth of graphene via process engineering,” Acc. Chem. Res. 46(10), 2263–2274 (2013).
[Crossref] [PubMed]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Porzi, C.

C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
[Crossref]

Potí, L.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Potì, L.

C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
[Crossref]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Qiu, J. F.

J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Rao, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Rochette, M.

J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Scaffardi, M.

C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
[Crossref]

Serafino, G.

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

Simi, A.

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Son, C. W.

Sun, J.

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282(13), 2615–2619 (2009).
[Crossref]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
[Crossref] [PubMed]

Sun, J. Q.

Sun, K.

J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

Sun, Q.

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282(13), 2615–2619 (2009).
[Crossref]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
[Crossref] [PubMed]

Sun, Q. Z.

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Vo, T. D.

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Wang, A.

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

Wang, J.

X. Hu, M. Zeng, A. Wang, L. Zhu, L. Fu, and J. Wang, “Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal,” Opt. Express 23(20), 26158–26167 (2015).
[Crossref] [PubMed]

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4, 7491 (2014).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, X. X. Wu, and A. E. Willner, “Optical hexadecimal coding/decoding using 16-QAM signal and FWM in HNLFs,” J. Lightwave Technol. 30(17), 2890–2900 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express 19(19), 18246–18252 (2011).
[Crossref] [PubMed]

J. Wang, S. R. Nuccio, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Optical data exchange of 100-Gbit/s DQPSK signals,” Opt. Express 18(23), 23740–23745 (2010).
[Crossref] [PubMed]

J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009).
[Crossref] [PubMed]

J. Wang, Q. Z. Sun, and J. Q. Sun, “Ultrafast all-optical logic AND gate for CSRZ signals using periodically poled lithium niobate,” J. Opt. Soc. Am. B 26(5), 951–958 (2009).
[Crossref]

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282(13), 2615–2619 (2009).
[Crossref]

Wang, L.

Wang, X.

Willner, A. E.

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Woo, D. H.

Wu, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Wu, X. X.

J. Wang, J.-Y. Yang, X. X. Wu, and A. E. Willner, “Optical hexadecimal coding/decoding using 16-QAM signal and FWM in HNLFs,” J. Lightwave Technol. 30(17), 2890–2900 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Wu, Y.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Xie, Y.

Xu, B.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

Xu, D.-X.

Xu, J.

Yamashita, S.

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

Yan, K.

K. Yan, L. Fu, H. Peng, and Z. Liu, “Designed CVD growth of graphene via process engineering,” Acc. Chem. Res. 46(10), 2263–2274 (2013).
[Crossref] [PubMed]

Yang, J.-Y.

Yao, B.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Yilmaz, O. F.

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Zeng, M.

Zhang, L.

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Zhang, X.

L. Wang, W. Cai, X. Zhang, and J. Xu, “Surface plasmons at the interface between graphene and Kerr-type nonlinear media,” Opt. Lett. 37(13), 2730–2732 (2012).
[Crossref] [PubMed]

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282(13), 2615–2619 (2009).
[Crossref]

Zhou, X.

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

Zhu, L.

Acc. Chem. Res. (1)

K. Yan, L. Fu, H. Peng, and Z. Liu, “Designed CVD growth of graphene via process engineering,” Acc. Chem. Res. 46(10), 2263–2274 (2013).
[Crossref] [PubMed]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

N. Deng, K. Chan, C. K. Chan, and L. K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006).
[Crossref]

C. Porzi, M. Scaffardi, L. Potì, and A. Bogoni, “Optical digital signal processing in a single SOA without assist probe light,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1469–1475 (2010).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (6)

G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L. Potí, “Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate,” IEEE Photonics Technol. Lett. 18(8), 917–919 (2006).
[Crossref]

Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, X. Zhou, B. Wu, and K. S. Chiang, “Four-wave mixing in a microfiber attached onto a graphene film,” IEEE Photonics Technol. Lett. 26(3), 249–252 (2014).
[Crossref]

B. Xu, A. Martinez, and S. Yamashita, “Mechanically exfoliated graphene for four-wave-mixing-based wavelength conversion,” IEEE Photonics Technol. Lett. 24(20), 1792–1794 (2012).
[Crossref]

E. Lazzeri, A. Malacarne, G. Serafino, and A. Bogoni, “Optical XOR for error detection and coding of QPSK I and Q components in PPLN waveguide,” IEEE Photonics Technol. Lett. 24(24), 2258–2261 (2012).
[Crossref]

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photonics Technol. Lett. 23(10), 615–617 (2011).
[Crossref]

J. F. Qiu, K. Sun, M. Rochette, and L. R. Chen, “Reconfigurable all-optical multilogic gate (XOR, AND, and OR) based on cross-phase modulation in a highly nonlinear fiber,” IEEE Photonics Technol. Lett. 22(16), 1199–1201 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 607–609 (2012).
[Crossref]

Nature (1)

S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363(6430), 603–605 (1993).
[Crossref]

Opt. Commun. (1)

J. Wang, Q. Sun, J. Sun, and X. Zhang, “Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber,” Opt. Commun. 282(13), 2615–2619 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Gui and J. Wang, “Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction,” Sci. Rep. 4, 7491 (2014).
[Crossref] [PubMed]

Science (2)

D. Basko, “Applied physics. A photothermoelectric effect in graphene,” Science 334(6056), 610–611 (2011).
[Crossref] [PubMed]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286(5444), 1523–1528 (1999).
[Crossref] [PubMed]

Other (3)

M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer, 2009).

H. Zhou, T. Gu, J. F. McMillan, N. Petrone, A. Zande, J. C. Hone, M. Yu, G.-Q. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Four-wave mixing in slow-light graphene-silicon photonic crystal waveguides,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper FF1K.8.
[Crossref]

B. Xu, A. Martinez, K. Fuse, and S. Yamashita, “Generation of four wave mixing in graphene and carbon nanotubes optically deposited onto fiber ferrules,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMAA6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication process of the graphene-assisted nonlinear optical device.
Fig. 2
Fig. 2 (a) Optical microscope (OM) image of graphene transferred on a SiO2/Si substrate. (b) Scanning electron microscope (SEM) image of graphene transferred on silicon-on-insulator (SOI). (c) Typical Raman spectrum of single-layer graphene on a SiO2/Si substrate (excitation wavelength: 532 nm).
Fig. 3
Fig. 3 (a) Concept and (b) principle of hybrid quaternary arithmetic functions (2A-B, 2B-A) using degenerate FWM and (D)QPSK signals.
Fig. 4
Fig. 4 Experimental setup for degenerate FWM-based 10-Gbaud optical hybrid quaternary arithmetic functions in a graphene-assisted nonlinear optical device. Inset: “sandwiched structure” graphene sample used as a nonlinear optical device. ECL: external cavity laser; AWG: arbitrary waveform generator; FBG: fiber Bragg grating; EDFA: erbium-doped fiber amplifier; ODL: optical delay line; TF: tunable filter; OC: optical coupler; HP-EDFA: high-power erbium-doped fiber amplifier; PC: polarization controller.
Fig. 5
Fig. 5 Measured spectrum for 10 Gbaud two-input hybrid quaternary arithmetic functions.
Fig. 6
Fig. 6 Measured phase of symbol sequence with coherent detection for 10-Gbaud two-input hybrid quaternary arithmetic functions.
Fig. 7
Fig. 7 (a) Measured BER curves for two-input hybrid quaternary arithmetic functions of 2A-B and 2B-A; (b) BER versus signal offset.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E i 1 E A E A E B * , ϕ i 1 = ϕ A + ϕ A ϕ B
E i 2 E B E B E A * , ϕ i 2 = ϕ B + ϕ B ϕ A

Metrics