Abstract

The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 107 W/cm2 presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detailed computation on exciplex pumped alkali vapor laser with supersonic flow

Xingqi Xu, Binglin Shen, Jinghua Huang, Chunsheng Xia, and Bailiang Pan
Opt. Express 25(26) 32745-32756 (2017)

Modeling of supersonic diode pumped alkali lasers

Eyal Yacoby, Karol Waichman, Oren Sadot, Boris D. Barmashenko, and Salman Rosenwaks
J. Opt. Soc. Am. B 32(9) 1824-1833 (2015)

Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium

Zining Yang, Hongyan Wang, Qisheng Lu, Yuandong Li, Weihong Hua, Xiaojun Xu, and Jinbao Chen
J. Opt. Soc. Am. B 28(6) 1353-1364 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  2. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [Crossref]
  3. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
    [Crossref]
  4. A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side pumped alkali laser,” Proc. SPIE 7581, 75810H (2010).
    [Crossref]
  5. G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
    [Crossref]
  6. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
    [Crossref]
  7. I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
    [Crossref] [PubMed]
  8. B. V. Zhdanov and R. J. Knize, “Hydrocarbon-free potassium laser,” Electron. Lett. 43(19), 1024–1025 (2007).
    [Crossref]
  9. J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
    [Crossref]
  10. B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
    [Crossref]
  11. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
    [Crossref]
  12. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  13. W. F. Krupke, “Diode pumped alkali lasers (DPALs) – A review (rev1),” Proc. SPIE 7005, 700521 (2008).
    [Crossref]
  14. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: A new class of CW, near-infrared, high-power diode-pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
    [Crossref]
  15. D. L. Carroll, A. D. Palla, and J. T. Verdeyen, “Exciplex pumped alkali laser (XPAL) theory and modeling,” Proc. SPIE 8677, 86770J (2013).
    [Crossref]
  16. J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
    [Crossref]
  17. J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
    [Crossref]
  18. J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
    [Crossref]
  19. A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
    [Crossref]
  20. A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
    [Crossref]
  21. A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
    [Crossref]
  22. D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
    [Crossref]
  23. Extreme Networks white paper, “Cesium D line data,” (Extreme Networks, 2003), http://steck.us/alkalidata/cesiumnumbers.pdf
  24. R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6(4), 1519–1544 (1972).
    [Crossref]
  25. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations for the Metallic Elements - 298-2500-K,” Can. Metall. Q. 23(3), 309–313 (1984).
    [Crossref]
  26. C. L. Chen and A. V. Phelps, “Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened by Argon,” Phys. Rev. A 7(2), 470–479 (1973).
    [Crossref]

2015 (1)

2014 (1)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

2013 (3)

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

D. L. Carroll, A. D. Palla, and J. T. Verdeyen, “Exciplex pumped alkali laser (XPAL) theory and modeling,” Proc. SPIE 8677, 86770J (2013).
[Crossref]

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

2012 (2)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

2011 (1)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

2010 (5)

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side pumped alkali laser,” Proc. SPIE 7581, 75810H (2010).
[Crossref]

2009 (3)

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[Crossref]

2008 (2)

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) – A review (rev1),” Proc. SPIE 7005, 700521 (2008).
[Crossref]

2007 (1)

B. V. Zhdanov and R. J. Knize, “Hydrocarbon-free potassium laser,” Electron. Lett. 43(19), 1024–1025 (2007).
[Crossref]

2004 (2)

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: A new class of CW, near-infrared, high-power diode-pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

2003 (1)

1984 (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations for the Metallic Elements - 298-2500-K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

1973 (1)

C. L. Chen and A. V. Phelps, “Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened by Argon,” Phys. Rev. A 7(2), 470–479 (1973).
[Crossref]

1972 (1)

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6(4), 1519–1544 (1972).
[Crossref]

Alcock, C. B.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations for the Metallic Elements - 298-2500-K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Auslender, I.

Barmashenko, B.

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Carroll, D.

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

Carroll, D. L.

D. L. Carroll, A. D. Palla, and J. T. Verdeyen, “Exciplex pumped alkali laser (XPAL) theory and modeling,” Proc. SPIE 8677, 86770J (2013).
[Crossref]

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Chen, C. L.

C. L. Chen and A. V. Phelps, “Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened by Argon,” Phys. Rev. A 7(2), 470–479 (1973).
[Crossref]

Drummond, D. L.

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6(4), 1519–1544 (1972).
[Crossref]

Dubinskii, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Eden, J.

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

Eden, J. G.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Eroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Gallagher, A.

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6(4), 1519–1544 (1972).
[Crossref]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Hager, G.

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[Crossref]

Hager, G. D.

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Heaven, M. C.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Hedges, R. E. M.

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6(4), 1519–1544 (1972).
[Crossref]

Horrigan, M. K.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations for the Metallic Elements - 298-2500-K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Hostutler, D. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Itkin, V. P.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations for the Metallic Elements - 298-2500-K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Kanz, V. K.

Knize, R. J.

I. Auslender, B. Barmashenko, S. Rosenwaks, B. Zhdanov, M. Rotondaro, and R. J. Knize, “Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results,” Opt. Express 23(16), 20986–20996 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Hydrocarbon-free potassium laser,” Electron. Lett. 43(19), 1024–1025 (2007).
[Crossref]

Komashko, A. M.

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side pumped alkali laser,” Proc. SPIE 7581, 75810H (2010).
[Crossref]

Krupke, W. F.

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) – A review (rev1),” Proc. SPIE 7005, 700521 (2008).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: A new class of CW, near-infrared, high-power diode-pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Merkle, L. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Oliker, B. Q.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Palla, A. D.

D. L. Carroll, A. D. Palla, and J. T. Verdeyen, “Exciplex pumped alkali laser (XPAL) theory and modeling,” Proc. SPIE 8677, 86770J (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Payne, S. A.

Perram, G. P.

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

Phelps, A. V.

C. L. Chen and A. V. Phelps, “Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened by Argon,” Phys. Rev. A 7(2), 470–479 (1973).
[Crossref]

Pitz, G. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Readle, J.

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

Readle, J. D.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Rosenwaks, S.

Rotondaro, M.

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Sell, J.

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

Spinka, T.

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

Spinka, T. M.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Verdeyen, J.

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

Verdeyen, J. T.

D. L. Carroll, A. D. Palla, and J. T. Verdeyen, “Exciplex pumped alkali laser (XPAL) theory and modeling,” Proc. SPIE 8677, 86770J (2013).
[Crossref]

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Wagner, C.

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

Wagner, C. J.

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

Zhdanov, B.

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Hydrocarbon-free potassium laser,” Electron. Lett. 43(19), 1024–1025 (2007).
[Crossref]

Zweiback, J.

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side pumped alkali laser,” Proc. SPIE 7581, 75810H (2010).
[Crossref]

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[Crossref]

Appl. Phys. B (2)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101(1-2), 45–56 (2010).
[Crossref]

G. D. Hager and G. P. Perram, “A three-level model for alkali metal vapor lasers. Part II: broadband optical pumping,” Appl. Phys. B 112(4), 507–520 (2013).
[Crossref]

Appl. Phys. Lett. (1)

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94(25), 251112 (2009).
[Crossref]

Can. Metall. Q. (1)

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor-Pressure Equations for the Metallic Elements - 298-2500-K,” Can. Metall. Q. 23(3), 309–313 (1984).
[Crossref]

Electron. Lett. (1)

B. V. Zhdanov and R. J. Knize, “Hydrocarbon-free potassium laser,” Electron. Lett. 43(19), 1024–1025 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

D. L. Carroll and J. T. Verdeyen, “A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser,” J. Phys. At. Mol. Opt. Phys. 46(2), 025402 (2013).
[Crossref]

Opt. Commun. (2)

J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282(9), 1871–1873 (2009).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, J. Sell, and R. J. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281(23), 5862–5863 (2008).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6(4), 1519–1544 (1972).
[Crossref]

C. L. Chen and A. V. Phelps, “Absorption Coefficients for the Wings of the First Two Resonance Doublets of Cesium Broadened by Argon,” Phys. Rev. A 7(2), 470–479 (1973).
[Crossref]

Proc. SPIE (10)

J. Readle, C. Wagner, J. Verdeyen, T. Spinka, D. Carroll, and J. Eden, “Excimer-pumped alkali vapor lasers: A new class of photoassociation lasers,” Proc. SPIE 7581, 75810K (2010).
[Crossref]

A. D. Palla, J. T. Verdeyen, and D. L. Carroll, “Exciplex pumped alkali laser (XPAL) modeling and theory,” Proc. SPIE 7751, 77510F (2010).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, and M. C. Heaven, “XPAL modeling and theory,” Proc. SPIE 7915, 79150B (2011).
[Crossref]

A. D. Palla, D. L. Carroll, J. T. Verdeyen, J. D. Readle, T. M. Spinka, C. J. Wagner, J. G. Eden, and M. C. Heaven, “Multi-dimensional modeling of the XPAL system,” Proc. SPIE 7581, 75810L (2010).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs) – A review (rev1),” Proc. SPIE 7005, 700521 (2008).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “DPAL: A new class of CW, near-infrared, high-power diode-pumped alkali (vapor) lasers,” Proc. SPIE 5334, 156–167 (2004).
[Crossref]

D. L. Carroll, A. D. Palla, and J. T. Verdeyen, “Exciplex pumped alkali laser (XPAL) theory and modeling,” Proc. SPIE 8677, 86770J (2013).
[Crossref]

J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in alkali atoms pumped by the dissociation of alkali-rare gas exciplexes (excimers),” Proc. SPIE 7196, 71960D (2009).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side pumped alkali laser,” Proc. SPIE 7581, 75810H (2010).
[Crossref]

Quantum Electron. (1)

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Eroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42(2), 95–98 (2012).
[Crossref]

Other (1)

Extreme Networks white paper, “Cesium D line data,” (Extreme Networks, 2003), http://steck.us/alkalidata/cesiumnumbers.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of an end-pumped XPAL configuration.
Fig. 2
Fig. 2 Energy levels and main kinetic processes of the broadband pump cesium-argon four-level XPAL theoretical model.
Fig. 3
Fig. 3 Population density distributions along the vapor cell.
Fig. 4
Fig. 4 Propagating pump and laser intensities.
Fig. 5
Fig. 5 Evolution of spectrally resolved intensity of propagating pump light.
Fig. 6
Fig. 6 Optical-to-optical efficiency versus input pump intensity at different temperatures of the vapor cell.
Fig. 7
Fig. 7 Optimal pump intensity versus temperature.
Fig. 8
Fig. 8 Absorption efficiency, optical-to-optical efficiency, fluorescence efficiency, scattering efficiency, thermal efficiency and relative intensity of XPAL laser versus pumped laser intensity at 513 K.
Fig. 9
Fig. 9 Optical-to-Optical efficiency versus temperature at different pumped intensities.
Fig. 10
Fig. 10 Optical-to-optical efficiency, absorption efficiency, fluorescence efficiency, scattering efficiency and thermal efficiency versus vapor cell temperature with pumped intensity of 2× 10 6 W/c m 2 .
Fig. 11
Fig. 11 Optical-to-optical efficiency versus the reflectivity of output coupler with different pumped laser intensities at optimal temperatures.
Fig. 12
Fig. 12 Optical-to-optical efficiency versus vapor cell length with different input pumped intensities using a 90% transmittance output coupler with the cell temperature of 530 K.
Fig. 13
Fig. 13 Optical-to-optical efficiency versus vapor cell length with different pumped intensity using a 90% transmittance output coupler at optimal temperatures.
Fig. 14
Fig. 14 Optical-to-optical efficiency and absorption efficiency versus the concentrate of Ar at 600 K with the optimal pumped intensity of 5 × 107 W/cm2.

Tables (1)

Tables Icon

Table 1 Parameters used in the model

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

dn 0 ( z ) dt =[ n 3 ( z )2 n 0 ( z )] σ 30 ( I l + ( z )+ I l ( z ) ) h ν l + n 3 ( z ) τ 30 k 01 n 0 ( z )M+ k 10 n 1 ( z ).
dn 1 ( z ) dt = k 01 n 0 ( z )M k 10 n 1 ( z )[ n 1 ( z ) n 2 ( z ) ] 0 σ 12 ( ν ) I p ( z,ν ) h ν p dν.
dn 2 ( z ) dt =[ n 1 ( z ) n 2 ( z ) ] 0 σ 12 ( ν ) I p ( z,ν ) h ν p dν k 23 n 2 ( z )+ k 32 n 3 ( z )M.
dn 3 ( z ) dt = k 23 n 2 ( z ) k 32 n 3 ( z )M n 3 ( z ) τ 30 [ n 3 ( z )2 n 0 ( z ) ] σ 30 [ I l + ( z )+ I l ( z ) ] h ν l .
σ 12 = k abs [ n 0 ] [ n 1 ] [ M ]= k abs [ M ] [ f 10 ] .
f 10 = n 1 n 0 = [ CsAr( X 2 Σ 1/2 ) ] [ Cs( S 2 1/2 ) ] = g 1 g 0 4π R 0 2 ΔRexp( Δ E 10 k b T )[ M ].
σ 12 ( ν )= σ 12 Δ ν abs / 2π ( ν ν abs ) 2 + ( Δ ν abs /2 ) 2 .
n 0 + n 1 + n 2 + n 3 = n CS .
I p ( 0,ν )= I 0 2 Δ ν D ( ln2 π ) 1/2 exp[ ( 4ln2 ( ν ν p ) 2 Δ ν p 2 ) ].
I p ( z+Δz,ν )= I p ( z,ν )exp{ [ n 1 ( z ) n 2 ( z ) ] σ 12 ( ν )Δz }.
I l ± ( z+Δz )= I l ± ( z )exp{ ±[ n 3 ( z )2 n 0 ( z ) ] σ 30 Δz }.
I p ( 0,ν )= I p in ( ν ) T p .
I l + ( 0 )= I l ( 0 ) T l 2 R oc .
I l ( l )= I l + ( l ) T l 2 T s 2 R p .
I out = I l ( 0 ) T l (1 R oc ).
{ 2L[ ( k 10 +P )( P+ k 23 ) P k 01 M P k 01 M ]+ k 23 } n 2 ( z ) [ 2L ( k 01 +P ) k 32 M P k 01 M +( L+ 1 τ 30 + k 32 M ) ] n 3 ( z )=0.
{ 1+{ [ ( k 10 +P )( P+ k 23 ) P k 01 M P k 01 M ]+ ( P+ k 23 ) P } } n 2 ( z ) +{ 1[ ( k 10 +P ) k 32 M P k 10 M + k 32 M P ] } n 3 ( z )= n cs .
n 3 ( z )= { 2L[ ( k 10 +P )( P+ k 23 ) P k 01 M P k 01 M ]+ k 23 } n Cs { 2L[ ( k 10 +P )( P+ k 23 ) P k 01 M P k 01 M ]+ k 23 }{ 1[ ( k 10 +P ) k 32 M P k 10 M + k 32 M P ] }+ [ 2L ( k 01 +P ) k 32 M P k 01 M +( L+ 1 τ 30 + k 32 M ) ]{ 1+{ [ ( k 10 +P )( P+ k 23 ) P k 01 M P k 01 M ]+ ( P+ k 23 ) P } } .
n 2 ( n 3 ( z ) )= [ 2L ( k 01 +P ) k 32 M P k 01 M +( L+ 1 τ 30 + k 32 M ) ] n 3 ( z ) { 2L[ ( k 10 +P )( P+ k 23 ) P k 01 M P k 01 M ]+ k 23 } .
n 1 ( z )= ( P+ k 23 ) n 2 ( z ) k 32 M n 3 ( z ) P .
n 0 ( z )= ( k 10 +P ) n 1 ( z )P n 2 ( z ) k 01 M .
I fluorescence = 0 l [ n 3 ( z ) τ 30 hc λ l ]dz .
I scattering = I out R oc 1 R oc ( 1 T l )+ I l + ( l )(1 T l )+ I l + ( l ) T l ( 1 T s )+ I l + ( l ) T l T s ( 1 R p ) + I l + ( l ) T l T s R p ( 1 T s )+ I l + ( l ) T l T s 2 R p ( 1 T l )+ I l ( 0 )( 1 T l ).
I p absorb = I p ( 0 ) I p ( l ).
I otherloss = I p absorb I out I fluorescence I scattering .
η absorb = η oo + η thermal + η scattering + η fluorescence .

Metrics