Abstract

Complex light trapping structures make it challenging to simulate the optical properties of solar cells accurately. In this paper, a framework is proposed where matrices are used to describe the transition of the angular distribution of the light when it is reflected, transmitted or absorbed. The matrices can be computed using a range of different simulation methods and when parts of a complex structure are to be optimized, or the incident light is altered, the pre-computed matrices can be used with the potential benefit of saving computational time. The optical properties of silicon wafers with different texturing, surface coatings and light incident angles were simulated and compared with measurements to demonstrate the accuracy of the proposed framework. It is shown that different simulation methods can be effectively integrated to model different parts of the solar cell and structures with multiple coherent and incoherent layers. These features enable efficient and rapid evaluation of the optical properties of the device as a function of its physical properties.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupled modelling approach for optimization of bifacial silicon heterojunction solar cells with multi-scale interface textures

Ziga Lokar, Benjamin Lipovsek, Arsalan Razzaq, Valerie Depauw, Ivan Gordon, Jef Poortmans, Janez Krc, and Marko Topic
Opt. Express 27(20) A1554-A1568 (2019)

3D optical simulation formalism OPTOS for textured silicon solar cells

Nico Tucher, Johannes Eisenlohr, Peter Kiefel, Oliver Höhn, Hubert Hauser, Marius Peters, Claas Müller, Jan Christoph Goldschmidt, and Benedikt Bläsi
Opt. Express 23(24) A1720-A1734 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
    [Crossref]
  2. U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
    [Crossref]
  3. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Jpn. J. Appl. Phys. 62(1), 243–249 (1987).
    [Crossref]
  4. Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
    [Crossref]
  5. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  6. S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).
  7. S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).
  8. H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
    [Crossref]
  9. K. R. McIntosh and S. C. Baker-Finch, “OPAL 2: Rapid optical simulation of silicon solar cells,” in Proceedings of 38th Photovoltaic Specialists Conference, (IEEE, 2012), 265–271.
    [Crossref]
  10. A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
    [Crossref]
  11. Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
    [Crossref]
  12. S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
    [Crossref]
  13. Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
    [Crossref]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  15. Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
    [Crossref]
  16. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
    [Crossref]
  17. H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
    [Crossref]
  18. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  19. L. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Jpn. J. Appl. Phys. 86(1), 487–496 (1999).
    [Crossref]
  20. Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
    [Crossref]
  21. R. Santbergen, A. H. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21(S2Suppl 2), A262–A267 (2013).
    [Crossref] [PubMed]
  22. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
    [Crossref]
  23. J. Eisenlohr, N. Tucher, O. Höhn, H. Hauser, M. Peters, P. Kiefel, J. C. Goldschmidt, and B. Bläsi, “Matrix formalism for light propagation and absorption in thick textured optical sheets,” Opt. Express 23(11), A502–A518 (2015).
    [Crossref] [PubMed]
  24. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  25. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  26. Y. Sun, Y. Li, Z. Ouyang, and A. Lennon, “Modulation of anodic aluminium oxide-metal heterostructure for solar cell light trapping,” In Light, Energy and the Environment Congress (Optical Society of America, 2014), paper PF3B–3.
    [Crossref]
  27. H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition–a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1), 71–77 (2001).
    [Crossref]

2015 (1)

2014 (1)

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

2013 (3)

2012 (2)

Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

2011 (2)

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

2009 (1)

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2007 (1)

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

2001 (1)

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition–a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1), 71–77 (2001).
[Crossref]

1999 (1)

L. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Jpn. J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[Crossref]

1997 (1)

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[Crossref]

1993 (1)

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Jpn. J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Altermatt, P. P.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baker-Finch, S. C.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

Barnett, A.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Basu, P. K.

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Bengtson, S.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Bläsi, B.

Bothe, K.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Branz, H. M.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Brendel, R.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Jpn. J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Carroll, M.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Chen, X.

Cui, J.

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

David, S.

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Dhungel, S. K.

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

Dong, L.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Dunham, S.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

Dutta, S. K.

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

Eisenlohr, J.

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Ferré, R.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Fukui, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[Crossref]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Gangopadhyay, U.

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

Gerly, A.

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Glunz, S.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Goldschmidt, J. C.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Jpn. J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

Grohe, A.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Gu, M.

Hauser, H.

Hermle, M.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Hezel, R.

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition–a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1), 71–77 (2001).
[Crossref]

Hofmann, M.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Höhn, O.

Holst, H.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Inganas, O.

L. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Jpn. J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Inomata, Y.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[Crossref]

Janz, S.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Jia, B.

Jianshu, H.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Jingjia, J.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Kiefel, P.

Köntges, M.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Leitz, C.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Lennon, A.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
[Crossref]

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

Li, Y.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
[Crossref]

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

Li, Z.

Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
[Crossref]

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lochtefeld, A.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Lu, H.

Lu, W.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Lu, Z.

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

Martin, I.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

McIntosh, K. R.

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

Meier, D. L.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Metz, A.

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition–a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1), 71–77 (2001).
[Crossref]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[Crossref]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Nagel, H.

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition–a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1), 71–77 (2001).
[Crossref]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Opila, R. L.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Ouyang, Z.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

Y. Zhang, X. Chen, Z. Ouyang, H. Lu, B. Jia, Z. Shi, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3(4), 489–495 (2013).
[Crossref]

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

Page, M. R.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Peter, C.

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Peters, M.

Pettersson, L. A.

L. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Jpn. J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Pillai, S.

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Rohatgi, A.

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[Crossref]

Roman, L. S.

L. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Jpn. J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Roth, T.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Russelle De, J.-T.

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Saha, H.

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

Santbergen, R.

Schultz, O.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Shi, Z.

Shirasawa, K.

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[Crossref]

Smets, A. H.

Smith, A. W.

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[Crossref]

Staffan, W.

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Stefanou, N.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[Crossref]

Stradins, P.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Stryker, D.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Tucher, N.

Vetter, M.

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

Vogt, M. R.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Winter, M.

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[Crossref]

Yi, J.

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

Yost, V. E.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yu, Y.

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Yuan, H. C.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yu-Chen, S.

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Zeman, M.

Zhang, Y.

Zhao, Y.

Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
[Crossref]

Appl. Phys. Lett. (1)

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Comput. Phys. Commun. (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113(1), 49–77 (1998).
[Crossref]

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Energy Procedia (1)

H. Holst, M. Winter, M. R. Vogt, K. Bothe, M. Köntges, R. Brendel, and P. P. Altermatt, “Application of a New Ray Tracing Framework to the Analysis of Extended Regions in Si Solar Cell Modules,” Energy Procedia 38, 86–93 (2013).
[Crossref]

IEEE J. Photovolt (1)

Y. Li, S. Dunham, S. Pillai, Z. Ouyang, A. Barnett, A. Lochtefeld, and A. Lennon, “Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cells,” IEEE J. Photovolt 4(5), 1212–1219 (2014).
[Crossref]

Int. J. Photoenergy (1)

Y. Li, Z. Li, Y. Zhao, and A. Lennon, “Modelling of light trapping in acidic-textured multicrystalline silicon wafers,” Int. J. Photoenergy 2012, 1–8 (2012).
[Crossref]

Jpn. J. Appl. Phys. (2)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Jpn. J. Appl. Phys. 62(1), 243–249 (1987).
[Crossref]

L. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Jpn. J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Nano Lett. (1)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Prog. Photovolt. Res. Appl. (2)

S. C. Baker-Finch and K. R. McIntosh, “Reflection of normally incident light from silicon solar cells with pyramidal texture,” Prog. Photovolt. Res. Appl. 19(4), 406–416 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18(7), 500–504 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (5)

A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Sol. Energy Mater. Sol. Cells 29(1), 37–49 (1993).
[Crossref]

Y. Inomata, K. Fukui, and K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Sol. Energy Mater. Sol. Cells 48(1-4), 237–242 (1997).
[Crossref]

U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, “Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication,” Sol. Energy Mater. Sol. Cells 91(4), 285–289 (2007).
[Crossref]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 films prepared by remote plasma-enhanced chemical vapour deposition–a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells 65(1), 71–77 (2001).
[Crossref]

Other (7)

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

Y. Sun, Y. Li, Z. Ouyang, and A. Lennon, “Modulation of anodic aluminium oxide-metal heterostructure for solar cell light trapping,” In Light, Energy and the Environment Congress (Optical Society of America, 2014), paper PF3B–3.
[Crossref]

Y. Li, Z. Li, Z. Lu, J. Cui, Z. Ouyang, and A. Lennon, “Optical modelling for multilayer and geometric light-trapping structures for crystalline silicon solar cells,” in Proceedings of 40th Photovoltaic Specialist Conference, (IEEE, 2014), 1223–1226.
[Crossref]

A. Lochtefeld, W. Lu, M. Carroll, H. Jianshu, D. Stryker, S. Bengtson, Y. Yu, L. Dong, J. Jingjia, C. Leitz, A. Lennon, R. L. Opila, and A. Barnett, “15%, 20 Micron thin, silicon solar cells on steel,” in Proceedings of 39th Photovoltaic Specialists Conference (IEEE, 2013), 1364–1365.
[Crossref]

K. R. McIntosh and S. C. Baker-Finch, “OPAL 2: Rapid optical simulation of silicon solar cells,” in Proceedings of 38th Photovoltaic Specialists Conference, (IEEE, 2012), 265–271.
[Crossref]

S. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, and R. Ferré, “Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency cristalline silicon solar cells,” in Proceedings of 20th European Photovoltaic Solar Energy Conference, Barcelona (Spain), 572–577 (2000).

S. David, C. Peter, W. Staffan, J.-T. Russelle De, A. Gerly, and S. Yu-Chen, “Towards the practical limits of silicon solar cells,” in Proceedings of 40th Photovoltaic Specialists Conference, (IEEE, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematics for: (a) notations of elements in angular matrices; (b) notations of angular matrices at each interface; (c) light propagation inside substrate and corresponding power distribution.
Fig. 2
Fig. 2 Schematics for: (a) acidic-textured wafer; (b) alkaline-textured wafer; and (c) alkaline-textured wafer with a 75 nm SiNx ARC. (d) Experimental (symbols) and simulated reflection (solid lines) for an acidic-textured wafer (green), an alkaline-textured wafer (blue), and an alkaline-textured wafer with one-side 75nm SiNx (red). The uncertainty of the simulation was 2%. The main source of error in the simulations arises from the angular matrix resolution which is determined by the dimensions of the matrix (51 × 51 in this study). This uncertainty was estimated to be ± 2% based on the discretization error.
Fig. 3
Fig. 3 Schematics showing illumination at an: (a) incident angle of 0° and corresponding incident distribution E0d; and (b) incident angle of 30° and corresponding incident distribution E30d. (c) Experimental (symbols) and simulated (solid lines) reflection plus transmission for alkaline-textured silicon wafer at incident angle of 0° (blue) and 30° (green). Similar as for Fig. 2, the uncertainty was estimated to be ± 2% based on the discretization error.
Fig. 4
Fig. 4 (a) Scattering intensity at different angles for incident light from 0° (blue line), 10° (red line) and −10° (yellow line). (b) Angular matrix of internal rear reflection of the proposed thin silicon device. The color represents the reflection.
Fig. 5
Fig. 5 Schematics for a device: (a) with a nano-grating; and (b) without a nano-grating. (c) Simulated absorption (solid lines) and reflection (dashed line) for the device with the nano-grating (blue) and without the nano-grating (red).
Fig. 6
Fig. 6 The enhancement of photon-generated current of the proposed solar cell as a function of wafer thickness for polished front surface (black line) and pyramid textured front surface (red line).
Fig. 7
Fig. 7 The schematic diagram of simulated module structure, with angular matrices for (a) first substructure and (b) second substructure.
Fig. 8
Fig. 8 The normalized photocurrent of the solar cell in the module as a function of glass ARC thickness.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R *,j = i=1 m R i,j p i
P r =[ R *,1 R *,2 R *,j R *,m1 R *,m ]=[ i=1 m R i,1 p i i=1 m R i,2 p i i=1 m R i,j p i i=1 m R i,m1 p i i=1 m R i,m p i ]=[ R 1,1 R 2,1 R m1,1 R m,1 R 1,2 R m,2 R i,j R 1,m1 R m,m1 R 1,m R 2,m R m1,m R m,m ]×[ p 1 p 2 p m1 p m ]=R P 0
R=[ R 1,1 R 2,1 R m1,1 R m,1 R 1,2 R m,2 R i,j R 1,m1 R m,m1 R 1,m R 2,m R m1,m R m,m ]
T=[ T 1,1 T 2,1 T m1,1 T m,1 T 1,2 T m,2 T i,j T 1,m1 T m,m1 T 1,m T 2,m T m1,m T m,m ]
P t =[ T 1,1 T 2,1 T m1,1 T m,1 T 1,2 T m,2 T i,j T 1,m1 T m,m1 T 1,m T 2,m T m1,m T m,m ]×[ p 1 p 2 p m1 p m ]=T P 0
A=[ A 1,1 0 0 0 0 0 A i,i 0 0 0 0 0 A m,m ]
R M = R ef + T if ( I A s ) R ir ( I A s ) T ef + = R ef + T if ( I A s ) R ir ( I A s ) T ef 1( I A s ) R ir ( I A s ) R if
A M = A s T ef + A s R ir ( I A s ) T ef + A s R if ( I A s ) R ir ( I A s ) T ef + = A s T ef + A s R ir ( I A s ) T ef 1 R if ( I A s ) R ir
T M = T ir ( I A s ) T ef + T ir ( I A s ) R if ( I A s ) R ir ( I A s ) T ef + = T ir ( I A s ) T ef + T ir ( I A s ) R if ( I A s ) R ir ( I A s ) T ef 1( I A s ) R if ( I A s ) R ir
{ R= R V = R M P 0 A= A V = A M P 0 T= T V = T M P 0
R S =[ r s 0 0 0 0 0 r s 0 0 0 0 0 r s ]

Metrics