Abstract

We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO2-catalysts. We also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize the degradation rate constant.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange

Yu Lim Chen, Li-Chung Kuo, Min Lun Tseng, Hao Ming Chen, Chih-Kai Chen, Hung Ji Huang, Ru-Shi Liu, and Din Ping Tsai
Opt. Express 21(6) 7240-7249 (2013)

Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation

Syed Saad Ahsan, Brandon Pereyra, Erica E Jung, and David Erickson
Opt. Express 22(S6) A1526-A1537 (2014)

SERS and the photo-catalytic performance of Ag/TiO2/graphene composites

Xiaolei Zhang, Ning Wang, Ruijia Liu, Xinyu Wang, Yong Zhu, and Jie Zhang
Opt. Mater. Express 8(4) 704-717 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
    [Crossref] [PubMed]
  2. S. D. Richardson, “Environmental mass spectrometry: Emerging contaminants and current issues,” Anal. Chem. 80(12), 4373–4402 (2008).
    [Crossref] [PubMed]
  3. S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
    [Crossref]
  4. O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water-Treatment,” Chem. Rev. 93(2), 671–698 (1993).
    [Crossref]
  5. P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
    [Crossref]
  6. U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” J. Photochem. Photobiol. Photochem. Rev. 9(1), 1–12 (2008).
    [Crossref]
  7. N. Nirmalakhandan, Y. H. Lee, and R. E. Speece, “Designing a Cost-Efficient Air-Stripping Process,” J. Am. Water Works Assoc. 79, 56–63 (1987).
  8. M. H. Stenzel, “Remove Organics by Activated Carbon Adsorption,” Chem. Eng. Prog. 89, 36–43 (1993).
  9. J. W. Blackburn, W. L. Troxler, and G. S. Sayler, “Prediction of the fates of organic chemicals in a biological treatment process—an overview,” Environ. Prog. 3(3), 163–176 (1984).
    [Crossref]
  10. J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
    [Crossref] [PubMed]
  11. H. Yang and H. Cheng, “Controlling nitrite level in drinking water by chlorination and chloramination,” Separ. Purif. Tech. 56(3), 392–396 (2007).
    [Crossref]
  12. A. Hagfeldt and M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev. 95(1), 49–68 (1995).
    [Crossref]
  13. S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
    [Crossref] [PubMed]
  14. M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
    [Crossref]
  15. M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem. Rev. 93(1), 341–357 (1993).
    [Crossref]
  16. R. W. Matthews, “Photocatalytic Oxidation of Organic Contaminants in Water - an Aid to Environmental Preservation,” Pure Appl. Chem. 64(9), 1285–1290 (1992).
    [Crossref]
  17. D. Bahnemann, “Photocatalytic water treatment: solar energy applications,” Sol. Energy 77(5), 445–459 (2004).
    [Crossref]
  18. A. K. Ray and A. A. C. M. Beenackers, “Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis,” AIChE J. 43(10), 2571–2578 (1997).
    [Crossref]
  19. A. Mills, R. H. Davies, and D. Worsley, “Water-Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev. 22(6), 417–425 (1993).
    [Crossref]
  20. S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
    [Crossref]
  21. N. J. Peill and M. R. Hoffmann, “Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol,” Environ. Sci. Technol. 29(12), 2974–2981 (1995).
    [Crossref] [PubMed]
  22. Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
    [Crossref]
  23. A. Lamberti, “Microfluidic photocatalytic device exploiting PDMS/TiO 2 nanocomposite,” Appl. Surf. Sci. 335, 50–54 (2015).
    [Crossref]
  24. A. K. Ray and A. A. C. M. Beenackers, “Novel photocatalytic reactor for water purification,” AIChE J. 44(2), 477–483 (1998).
    [Crossref]
  25. A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
    [Crossref]
  26. P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
    [Crossref]
  27. S. S. Ahsan, B. Pereyra, E. E. Jung, and D. Erickson, “Engineered surface scatterers in edge-lit slab waveguides to improve light delivery in algae cultivation,” Opt. Express 22(S6Suppl 6), A1526–A1537 (2014).
    [Crossref] [PubMed]
  28. L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
    [Crossref] [PubMed]
  29. S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
    [Crossref] [PubMed]
  30. N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
    [Crossref] [PubMed]

2015 (1)

A. Lamberti, “Microfluidic photocatalytic device exploiting PDMS/TiO 2 nanocomposite,” Appl. Surf. Sci. 335, 50–54 (2015).
[Crossref]

2014 (1)

2013 (2)

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

2012 (1)

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

2010 (1)

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

2009 (2)

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
[Crossref] [PubMed]

2008 (3)

T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
[Crossref] [PubMed]

S. D. Richardson, “Environmental mass spectrometry: Emerging contaminants and current issues,” Anal. Chem. 80(12), 4373–4402 (2008).
[Crossref] [PubMed]

U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” J. Photochem. Photobiol. Photochem. Rev. 9(1), 1–12 (2008).
[Crossref]

2007 (2)

H. Yang and H. Cheng, “Controlling nitrite level in drinking water by chlorination and chloramination,” Separ. Purif. Tech. 56(3), 392–396 (2007).
[Crossref]

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

2006 (1)

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

2004 (2)

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

D. Bahnemann, “Photocatalytic water treatment: solar energy applications,” Sol. Energy 77(5), 445–459 (2004).
[Crossref]

2002 (1)

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

1999 (1)

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[Crossref]

1998 (2)

A. K. Ray and A. A. C. M. Beenackers, “Novel photocatalytic reactor for water purification,” AIChE J. 44(2), 477–483 (1998).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[Crossref]

1997 (1)

A. K. Ray and A. A. C. M. Beenackers, “Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis,” AIChE J. 43(10), 2571–2578 (1997).
[Crossref]

1995 (2)

A. Hagfeldt and M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev. 95(1), 49–68 (1995).
[Crossref]

N. J. Peill and M. R. Hoffmann, “Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol,” Environ. Sci. Technol. 29(12), 2974–2981 (1995).
[Crossref] [PubMed]

1993 (4)

A. Mills, R. H. Davies, and D. Worsley, “Water-Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev. 22(6), 417–425 (1993).
[Crossref]

M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem. Rev. 93(1), 341–357 (1993).
[Crossref]

M. H. Stenzel, “Remove Organics by Activated Carbon Adsorption,” Chem. Eng. Prog. 89, 36–43 (1993).

O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water-Treatment,” Chem. Rev. 93(2), 671–698 (1993).
[Crossref]

1992 (1)

R. W. Matthews, “Photocatalytic Oxidation of Organic Contaminants in Water - an Aid to Environmental Preservation,” Pure Appl. Chem. 64(9), 1285–1290 (1992).
[Crossref]

1987 (1)

N. Nirmalakhandan, Y. H. Lee, and R. E. Speece, “Designing a Cost-Efficient Air-Stripping Process,” J. Am. Water Works Assoc. 79, 56–63 (1987).

1984 (1)

J. W. Blackburn, W. L. Troxler, and G. S. Sayler, “Prediction of the fates of organic chemicals in a biological treatment process—an overview,” Environ. Prog. 3(3), 163–176 (1984).
[Crossref]

Abdullah, A. H.

U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” J. Photochem. Photobiol. Photochem. Rev. 9(1), 1–12 (2008).
[Crossref]

Ahsan, S. S.

Augugliaro, V.

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

Bahnemann, D.

D. Bahnemann, “Photocatalytic water treatment: solar energy applications,” Sol. Energy 77(5), 445–459 (2004).
[Crossref]

Banos, M. A.

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

Beenackers, A. A. C. M.

A. K. Ray and A. A. C. M. Beenackers, “Novel photocatalytic reactor for water purification,” AIChE J. 44(2), 477–483 (1998).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis,” AIChE J. 43(10), 2571–2578 (1997).
[Crossref]

Berber, H.

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

Bhanumurthy, K.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Blackburn, J. W.

J. W. Blackburn, W. L. Troxler, and G. S. Sayler, “Prediction of the fates of organic chemicals in a biological treatment process—an overview,” Environ. Prog. 3(3), 163–176 (1984).
[Crossref]

Blanco, J.

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

Braun, A. M.

O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water-Treatment,” Chem. Rev. 93(2), 671–698 (1993).
[Crossref]

Chan, H. L. W.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

Chan, N. Y.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Chen, B.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Chen, Y.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Chen, Z.

J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
[Crossref] [PubMed]

Cheng, H.

H. Yang and H. Cheng, “Controlling nitrite level in drinking water by chlorination and chloramination,” Separ. Purif. Tech. 56(3), 392–396 (2007).
[Crossref]

Chu, J.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Contreras, S.

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

Davies, R. H.

A. Mills, R. H. Davies, and D. Worsley, “Water-Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev. 22(6), 417–425 (1993).
[Crossref]

Dey, G. K.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Dulay, M. T.

M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem. Rev. 93(1), 341–357 (1993).
[Crossref]

Erickson, D.

Esplugas, S.

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

Fernandez-Ibanez, P.

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

Fox, M. A.

M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem. Rev. 93(1), 341–357 (1993).
[Crossref]

Garcia-Molina, V.

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

Gaya, U. I.

U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” J. Photochem. Photobiol. Photochem. Rev. 9(1), 1–12 (2008).
[Crossref]

Gernjak, W.

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

Gimenez, J.

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

Giménez, J.

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

Graetzel, M.

A. Hagfeldt and M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev. 95(1), 49–68 (1995).
[Crossref]

Gumus, A.

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

Hagfeldt, A.

A. Hagfeldt and M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev. 95(1), 49–68 (1995).
[Crossref]

Han, Z.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

He, W.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Hochstrat, R.

T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
[Crossref] [PubMed]

Hoffmann, M. R.

N. J. Peill and M. R. Hoffmann, “Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol,” Environ. Sci. Technol. 29(12), 2974–2981 (1995).
[Crossref] [PubMed]

Jung, E. E.

Lamberti, A.

A. Lamberti, “Microfluidic photocatalytic device exploiting PDMS/TiO 2 nanocomposite,” Appl. Surf. Sci. 335, 50–54 (2015).
[Crossref]

Lee, Y. H.

N. Nirmalakhandan, Y. H. Lee, and R. E. Speece, “Designing a Cost-Efficient Air-Stripping Process,” J. Am. Water Works Assoc. 79, 56–63 (1987).

Legrini, O.

O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water-Treatment,” Chem. Rev. 93(2), 671–698 (1993).
[Crossref]

Lei, L.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

Li, J.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Li, S.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Li, Z.

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Loddo, V.

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

Lu, J.

J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
[Crossref] [PubMed]

Ma, J.

J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
[Crossref] [PubMed]

Malato, S.

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

Maldonado, M. I.

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

Matthews, R. W.

R. W. Matthews, “Photocatalytic Oxidation of Organic Contaminants in Water - an Aid to Environmental Preservation,” Pure Appl. Chem. 64(9), 1285–1290 (1992).
[Crossref]

Melin, T.

T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
[Crossref] [PubMed]

Mills, A.

A. Mills, R. H. Davies, and D. Worsley, “Water-Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev. 22(6), 417–425 (1993).
[Crossref]

Mukherjee, P. S.

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[Crossref]

Nirmalakhandan, N.

N. Nirmalakhandan, Y. H. Lee, and R. E. Speece, “Designing a Cost-Efficient Air-Stripping Process,” J. Am. Water Works Assoc. 79, 56–63 (1987).

Oliveros, E.

O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water-Treatment,” Chem. Rev. 93(2), 671–698 (1993).
[Crossref]

Padmanabhan, P. V. A.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Palmisano, G.

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

Palmisano, L.

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

Pascual, E.

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

Peill, N. J.

N. J. Peill and M. R. Hoffmann, “Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol,” Environ. Sci. Technol. 29(12), 2974–2981 (1995).
[Crossref] [PubMed]

Pera-Titus, M.

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

Pereyra, B.

Ray, A. K.

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Novel photocatalytic reactor for water purification,” AIChE J. 44(2), 477–483 (1998).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis,” AIChE J. 43(10), 2571–2578 (1997).
[Crossref]

Richardson, S. D.

S. D. Richardson, “Environmental mass spectrometry: Emerging contaminants and current issues,” Anal. Chem. 80(12), 4373–4402 (2008).
[Crossref] [PubMed]

Rodríguez, M.

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

Salehi, F.

T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
[Crossref] [PubMed]

Satpute, R. U.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Sayler, G. S.

J. W. Blackburn, W. L. Troxler, and G. S. Sayler, “Prediction of the fates of organic chemicals in a biological treatment process—an overview,” Environ. Prog. 3(3), 163–176 (1984).
[Crossref]

Sengupta, P.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Song, W.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Speece, R. E.

N. Nirmalakhandan, Y. H. Lee, and R. E. Speece, “Designing a Cost-Efficient Air-Stripping Process,” J. Am. Water Works Assoc. 79, 56–63 (1987).

Sreekumar, K. P.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Stenzel, M. H.

M. H. Stenzel, “Remove Organics by Activated Carbon Adsorption,” Chem. Eng. Prog. 89, 36–43 (1993).

Tai, Q.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

Thiyagarajan, T. K.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Troxler, W. L.

J. W. Blackburn, W. L. Troxler, and G. S. Sayler, “Prediction of the fates of organic chemicals in a biological treatment process—an overview,” Environ. Prog. 3(3), 163–176 (1984).
[Crossref]

Tsai, D. P.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

Wang, N.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

Warrier, K. G. K.

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Wintgens, T.

T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
[Crossref] [PubMed]

Worsley, D.

A. Mills, R. H. Davies, and D. Worsley, “Water-Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev. 22(6), 417–425 (1993).
[Crossref]

Yang, H.

H. Yang and H. Cheng, “Controlling nitrite level in drinking water by chlorination and chloramination,” Separ. Purif. Tech. 56(3), 392–396 (2007).
[Crossref]

Yurdakal, S.

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

Zhang, T.

J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
[Crossref] [PubMed]

Zhang, X.

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Zhang, X. M.

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

AIChE J. (2)

A. K. Ray and A. A. C. M. Beenackers, “Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis,” AIChE J. 43(10), 2571–2578 (1997).
[Crossref]

A. K. Ray and A. A. C. M. Beenackers, “Novel photocatalytic reactor for water purification,” AIChE J. 44(2), 477–483 (1998).
[Crossref]

Anal. Chem. (1)

S. D. Richardson, “Environmental mass spectrometry: Emerging contaminants and current issues,” Anal. Chem. 80(12), 4373–4402 (2008).
[Crossref] [PubMed]

Appl. Catal. B (1)

M. Pera-Titus, V. Garcia-Molina, M. A. Banos, J. Gimenez, and S. Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B 47(4), 219–256 (2004).
[Crossref]

Appl. Surf. Sci. (1)

A. Lamberti, “Microfluidic photocatalytic device exploiting PDMS/TiO 2 nanocomposite,” Appl. Surf. Sci. 335, 50–54 (2015).
[Crossref]

Biomicrofluidics (1)

L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, and H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics 4(4), 043004 (2010).
[Crossref] [PubMed]

Catal. Today (3)

A. K. Ray and A. A. C. M. Beenackers, “Development of a new photocatalytic reactor for water purification,” Catal. Today 40(1), 73–83 (1998).
[Crossref]

S. Yurdakal, V. Loddo, V. Augugliaro, H. Berber, G. Palmisano, and L. Palmisano, “Photodegradation of pharmaceutical drugs in aqueous TiO2 suspensions: Mechanism and kinetics,” Catal. Today 129(1-2), 9–15 (2007).
[Crossref]

S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today 147(1), 1–59 (2009).
[Crossref]

Chem. Eng. Prog. (1)

M. H. Stenzel, “Remove Organics by Activated Carbon Adsorption,” Chem. Eng. Prog. 89, 36–43 (1993).

Chem. Eng. Technol. (1)

P. S. Mukherjee and A. K. Ray, “Major challenges in the design of a large-scale photocatalytic reactor for water treatment,” Chem. Eng. Technol. 22(3), 253–260 (1999).
[Crossref]

Chem. Rev. (3)

O. Legrini, E. Oliveros, and A. M. Braun, “Photochemical Processes for Water-Treatment,” Chem. Rev. 93(2), 671–698 (1993).
[Crossref]

M. A. Fox and M. T. Dulay, “Heterogeneous Photocatalysis,” Chem. Rev. 93(1), 341–357 (1993).
[Crossref]

A. Hagfeldt and M. Graetzel, “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev. 95(1), 49–68 (1995).
[Crossref]

Chem. Soc. Rev. (1)

A. Mills, R. H. Davies, and D. Worsley, “Water-Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev. 22(6), 417–425 (1993).
[Crossref]

Environ. Prog. (1)

J. W. Blackburn, W. L. Troxler, and G. S. Sayler, “Prediction of the fates of organic chemicals in a biological treatment process—an overview,” Environ. Prog. 3(3), 163–176 (1984).
[Crossref]

Environ. Sci. Technol. (1)

N. J. Peill and M. R. Hoffmann, “Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol,” Environ. Sci. Technol. 29(12), 2974–2981 (1995).
[Crossref] [PubMed]

J. Am. Water Works Assoc. (1)

N. Nirmalakhandan, Y. H. Lee, and R. E. Speece, “Designing a Cost-Efficient Air-Stripping Process,” J. Am. Water Works Assoc. 79, 56–63 (1987).

J. Hazard. Mater. (1)

J. Lu, T. Zhang, J. Ma, and Z. Chen, “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water,” J. Hazard. Mater. 162(1), 140–145 (2009).
[Crossref] [PubMed]

J. Photochem. Photobiol. Photochem. Rev. (1)

U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” J. Photochem. Photobiol. Photochem. Rev. 9(1), 1–12 (2008).
[Crossref]

Lab Chip (2)

S. S. Ahsan, A. Gumus, and D. Erickson, “Redox mediated photocatalytic water-splitting in optofluidic microreactors,” Lab Chip 13(3), 409–414 (2013).
[Crossref] [PubMed]

N. Wang, X. Zhang, B. Chen, W. Song, N. Y. Chan, and H. L. W. Chan, “Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source,” Lab Chip 12(20), 3983–3990 (2012).
[Crossref] [PubMed]

Microelectron. Eng. (1)

Z. Han, J. Li, W. He, S. Li, Z. Li, J. Chu, and Y. Chen, “A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions,” Microelectron. Eng. 111, 199–203 (2013).
[Crossref]

Opt. Express (1)

Pure Appl. Chem. (1)

R. W. Matthews, “Photocatalytic Oxidation of Organic Contaminants in Water - an Aid to Environmental Preservation,” Pure Appl. Chem. 64(9), 1285–1290 (1992).
[Crossref]

Separ. Purif. Tech. (1)

H. Yang and H. Cheng, “Controlling nitrite level in drinking water by chlorination and chloramination,” Separ. Purif. Tech. 56(3), 392–396 (2007).
[Crossref]

Sol. Energy (1)

D. Bahnemann, “Photocatalytic water treatment: solar energy applications,” Sol. Energy 77(5), 445–459 (2004).
[Crossref]

Vacuum (1)

P. V. A. Padmanabhan, K. P. Sreekumar, T. K. Thiyagarajan, R. U. Satpute, K. Bhanumurthy, P. Sengupta, G. K. Dey, and K. G. K. Warrier, “Nano-crystalline titanium dioxide formed by reactive plasma synthesis,” Vacuum 80(11-12), 1252–1255 (2006).
[Crossref]

Water Res. (1)

S. Esplugas, J. Giménez, S. Contreras, E. Pascual, and M. Rodríguez, “Comparison of different advanced oxidation processes for phenol degradation,” Water Res. 36(4), 1034–1042 (2002).
[Crossref] [PubMed]

Water Sci. Technol. (1)

T. Wintgens, F. Salehi, R. Hochstrat, and T. Melin, “Emerging contaminants and treatment options in water recycling for indirect potable use,” Water Sci. Technol. 57(1), 99–107 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Picture of the stacked waveguide reactor; (b) SEM of the thin-film of TiO2 catalyst on a cover-slip slide.
Fig. 2
Fig. 2 Schematic of the waveguide with the gradient scatterers enabling uniform illumination.
Fig. 3
Fig. 3 Degradation Percentages of reactors with different scattering schemes for light delivery through the waveguides at capacity of 10mL/min or 1mL/min/layer.
Fig. 4
Fig. 4 Degradation Rate Constant with respect to the different flow rates.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SC(x)= k i s c i *(1/ k 0 x),
k 0 = k max (1+L* k max ) ,
1 c = 1 C*Γ + 1 c m α v ,
c=log(1x)/t,

Metrics