Abstract

Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photocatalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photocatalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts – ionic or covalent binary metals with layered graphite-like structures – effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of ~27% at bias voltage Vbias = 0.5V for magnesium diboride working as a catalyst for photoinduced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photocatalytic water splitting by binary layered metals.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Visible light-driven photocatalysis of doped SrTiO3 tubular structure

Jinwen Shi, Shaohua Shen, Yubin Chen, Liejin Guo, and Samuel S. Mao
Opt. Express 20(S2) A351-A359 (2012)

Surface Plasmon assisted CuxO photocatalyst for pure water splitting

Wen-Ting Kung, Yi-Hao Pai, Yu-Kuei Hsu, Chu-Hsuan Lin, and Chih-Ming Wang
Opt. Express 21(S2) A221-A228 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
    [Crossref]
  2. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  3. X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
    [Crossref] [PubMed]
  4. D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
    [Crossref] [PubMed]
  5. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
    [Crossref] [PubMed]
  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
    [Crossref] [PubMed]
  7. R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
    [Crossref] [PubMed]
  8. P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
    [Crossref] [PubMed]
  9. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
    [Crossref]
  10. J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
    [Crossref] [PubMed]
  11. K. T. Fountaine and H. A. Atwater, “Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires,” Opt. Express 22(S6Suppl 6), A1453–A1461 (2014).
    [Crossref] [PubMed]
  12. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
    [Crossref] [PubMed]
  13. G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
    [Crossref] [PubMed]
  14. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
    [Crossref] [PubMed]
  15. A. J. Leenheer and H. A. Atwater, “Water-splitting photoelectrolysis reaction rate via microscopic imaging of evolved oxygen bubbles,” J. Electrochem. Soc. 157(9), B1290–B1294 (2010).
    [Crossref]
  16. J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
    [Crossref] [PubMed]
  17. K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
    [Crossref]
  18. W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
    [Crossref]
  19. V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
    [Crossref]
  20. A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
    [Crossref]
  21. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
    [Crossref] [PubMed]
  22. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
    [Crossref] [PubMed]
  23. J. M. An and W. E. Pickett, “Superconductivity of MgB2: covalent bonds driven metallic,” Phys. Rev. Lett. 86(19), 4366–4369 (2001).
    [Crossref] [PubMed]
  24. W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
    [Crossref] [PubMed]
  25. X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
    [Crossref]
  26. Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
    [Crossref]
  27. G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
    [Crossref]
  28. H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
    [Crossref] [PubMed]
  29. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [Crossref] [PubMed]
  30. V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
    [Crossref]
  31. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
    [Crossref]
  32. H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
    [Crossref] [PubMed]
  33. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78(20), 205405 (2008).
    [Crossref]
  34. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
    [Crossref]
  35. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  36. X. Li, Z. Li, and J. Yang, “Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light,” Phys. Rev. Lett. 112(1), 018301 (2014).
    [Crossref] [PubMed]

2015 (1)

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

2014 (4)

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

K. T. Fountaine and H. A. Atwater, “Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires,” Opt. Express 22(S6Suppl 6), A1453–A1461 (2014).
[Crossref] [PubMed]

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

X. Li, Z. Li, and J. Yang, “Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light,” Phys. Rev. Lett. 112(1), 018301 (2014).
[Crossref] [PubMed]

2013 (2)

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

2012 (1)

G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
[Crossref] [PubMed]

2010 (5)

P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
[Crossref] [PubMed]

A. J. Leenheer and H. A. Atwater, “Water-splitting photoelectrolysis reaction rate via microscopic imaging of evolved oxygen bubbles,” J. Electrochem. Soc. 157(9), B1290–B1294 (2010).
[Crossref]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (3)

V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
[Crossref]

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

2008 (3)

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

2007 (1)

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

2006 (1)

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

2003 (2)

H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[Crossref] [PubMed]

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

2002 (6)

J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
[Crossref] [PubMed]

W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
[Crossref] [PubMed]

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
[Crossref]

G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
[Crossref]

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

2001 (5)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

J. M. An and W. E. Pickett, “Superconductivity of MgB2: covalent bonds driven metallic,” Phys. Rev. Lett. 86(19), 4366–4369 (2001).
[Crossref] [PubMed]

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

1985 (1)

L. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Akimitsu, J.

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

Alves, D. C. B.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

An, J. M.

J. M. An and W. E. Pickett, “Superconductivity of MgB2: covalent bonds driven metallic,” Phys. Rev. Lett. 86(19), 4366–4369 (2001).
[Crossref] [PubMed]

Antonietti, M.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Antropov, V. P.

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

Aoki, K.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Argondizzo, A.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Armin, A.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Asahi, R.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Asakura, K.

H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[Crossref] [PubMed]

Asefa, T.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Atwater, H. A.

K. T. Fountaine and H. A. Atwater, “Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires,” Opt. Express 22(S6Suppl 6), A1453–A1461 (2014).
[Crossref] [PubMed]

A. J. Leenheer and H. A. Atwater, “Water-splitting photoelectrolysis reaction rate via microscopic imaging of evolved oxygen bubbles,” J. Electrochem. Soc. 157(9), B1290–B1294 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Bak, T.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Baker, D. R.

P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
[Crossref] [PubMed]

Balassis, A.

V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
[Crossref]

A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
[Crossref]

Belashchenko, K. D.

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

Bernardini, F.

G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
[Crossref]

Blamire, M. G.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Bolton, L. R.

L. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Bonde, J.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Boyer, L. L.

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

Burn, P. L.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Burnell, G.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Carlsson, J. M.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Chakarov, D.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Chen, M.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Chen, R. H.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Chen, X.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Cheng, H.-M.

G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
[Crossref] [PubMed]

Chhowalla, M.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Chorkendorff, I.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Chulkov, E. V.

V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
[Crossref]

A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
[Crossref]

Connolly, J. S.

L. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Continenza, A.

G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
[Crossref]

Cui, X.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Damascelli, A.

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Domen, K.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Dou, S. X.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Echenique, P. M.

V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
[Crossref]

A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
[Crossref]

Eda, G.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Eguiluz, A. G.

W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
[Crossref] [PubMed]

Fan, H. J.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Feng, D. L.

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Fountaine, K. T.

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Fujita, T.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Galeckas, A.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Garrett-Roe, S.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Grätzel, M.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

Gumhalter, B.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Guo, L.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Guritanu, V.

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Horch, S.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Hou, J. G.

Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
[Crossref]

Im, J.-H.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Jaramillo, T. F.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Jin, H. M.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Jørgensen, K. P.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Kamat, P. V.

P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
[Crossref] [PubMed]

Kang, D.-J.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Karpinski, J.

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

Kato, H.

H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[Crossref] [PubMed]

Kazakov, S. M.

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

Kortus, J.

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

Kravets, A. F.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

Kravets, V. G.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

Ku, W.

W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
[Crossref] [PubMed]

Kudo, A.

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[Crossref] [PubMed]

Kuzmenko, A. B.

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

Kuznetsov, A. Yu.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Lee, H. N.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Lee, S.

J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
[Crossref] [PubMed]

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Leenheer, A. J.

A. J. Leenheer and H. A. Atwater, “Water-splitting photoelectrolysis reaction rate via microscopic imaging of evolved oxygen bubbles,” J. Electrochem. Soc. 157(9), B1290–B1294 (2010).
[Crossref]

Li, J.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Li, W. X.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Li, X.

X. Li, Z. Li, and J. Yang, “Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light,” Phys. Rev. Lett. 112(1), 018301 (2014).
[Crossref] [PubMed]

Li, Y.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Li, Z.

X. Li, Z. Li, and J. Yang, “Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light,” Phys. Rev. Lett. 112(1), 018301 (2014).
[Crossref] [PubMed]

Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
[Crossref]

Lin, Q.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Lindvall, N.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Liu, G.

G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
[Crossref] [PubMed]

Lu, D. H.

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Luo, J.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Maeda, K.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Mao, S. S.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Massidda, S.

G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
[Crossref]

Mayer, M. T.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Mazin, I. I.

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

Meredith, P.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Miseki, Y.

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

Morikawa, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Muranaka, T.

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

Nagamatsu, J.

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

Nagiri, R. C. R.

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Nakagawa, N.

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

Nazeeruddin, M. K.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Neubeck, S.

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

Nielsen, J. H.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Niu, P.

G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
[Crossref] [PubMed]

Nowotny, J.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Oh, B.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Ohwaki, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Park, N.-G.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Petek, H.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Pickett, W. E.

W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
[Crossref] [PubMed]

J. M. An and W. E. Pickett, “Superconductivity of MgB2: covalent bonds driven metallic,” Phys. Rev. Lett. 86(19), 4366–4369 (2001).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Profeta, G.

G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
[Crossref]

Quilty, J. W.

J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
[Crossref] [PubMed]

Radich, J. G.

P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
[Crossref] [PubMed]

Rekas, M.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Scalettar, R. T.

W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

Schreier, M.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Sellappan, R.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Shen, K. M.

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Shen, S.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Shen, Z.-X.

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Shenoy, V. B.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Silkin, V. M.

V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
[Crossref]

A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
[Crossref]

Silva, R.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Sorrell, C. C.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Stelmashenko, N. A.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Strickler, S. J.

L. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

Sun, J.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Taga, Y.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Tajima, S.

J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
[Crossref] [PubMed]

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

Takanabe, K.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Thomas, A.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Tilley, S. D.

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

Tvrdy, K.

P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
[Crossref] [PubMed]

Uchiyama, H.

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

van der Marel, D.

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

Voiry, D.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Wang, C.

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Wang, X.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Xin, G.

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

Yamaguchi, H.

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

Yamamoto, A.

J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
[Crossref] [PubMed]

Yang, J.

X. Li, Z. Li, and J. Yang, “Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light,” Phys. Rev. Lett. 112(1), 018301 (2014).
[Crossref] [PubMed]

Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
[Crossref]

Yates, K. A.

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

Yin, L.

G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
[Crossref] [PubMed]

Yurgens, A.

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Zeng, R.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Zenitani, Y.

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

Zhigadlo, N. D.

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

Zhu, M. Y.

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

Zhu, Q.

Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
[Crossref]

Chem. Rev. (2)

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based photocatalytic hydrogen generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

P. V. Kamat, K. Tvrdy, D. R. Baker, and J. G. Radich, “Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells,” Chem. Rev. 110(11), 6664–6688 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

Int. J. Hydrogen Energy (1)

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

J. Am. Chem. Soc. (2)

H. Kato, K. Asakura, and A. Kudo, “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure,” J. Am. Chem. Soc. 125(10), 3082–3089 (2003).
[Crossref] [PubMed]

G. Liu, P. Niu, L. Yin, and H.-M. Cheng, “α-Sulfur crystals as a visible-light-active photocatalyst,” J. Am. Chem. Soc. 134(22), 9070–9073 (2012).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

A. J. Leenheer and H. A. Atwater, “Water-splitting photoelectrolysis reaction rate via microscopic imaging of evolved oxygen bubbles,” J. Electrochem. Soc. 157(9), B1290–B1294 (2010).
[Crossref]

Nat. Mater. (3)

X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric Photocatalyst for Hydrogen Production from Water under Visible Light,” Nat. Mater. 8(1), 76–80 (2009).
[Crossref] [PubMed]

D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution,” Nat. Mater. 12(9), 850–855 (2013).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, “Electro-optics of perovskite solar cells,” Nat. Photonics 9(2), 106–112 (2015).
[Crossref]

Nat. Phys. (1)

X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter, and H. Petek, “Transient excitons at metal surfaces,” Nat. Phys. 10(7), 505–509 (2014).
[Crossref]

Nature (4)

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride,” Nature 410(6824), 63–64 (2001).
[Crossref] [PubMed]

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

L. R. Bolton, S. J. Strickler, and J. S. Connolly, “Limiting and realizable efficiencies of solar photolysis of water,” Nature 316(6028), 495–500 (1985).
[Crossref]

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Yu. Kuznetsov, and D. Chakarov, “Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites,” Phys. Chem. Chem. Phys. 15(37), 15528–15537 (2013).
[Crossref] [PubMed]

Phys. Rev. B (9)

K. A. Yates, G. Burnell, N. A. Stelmashenko, D.-J. Kang, H. N. Lee, B. Oh, and M. G. Blamire, “Disorder-induced collapse of the electron-phonon coupling in MgB2 observed by Raman spectroscopy,” Phys. Rev. B 68(22), 220512 (2003).
[Crossref]

W. X. Li, Y. Li, R. H. Chen, R. Zeng, S. X. Dou, M. Y. Zhu, and H. M. Jin, “Raman study of element doping effects on the superconductivity of MgB2,” Phys. Rev. B 77(9), 094517 (2008).
[Crossref]

V. Guritanu, A. B. Kuzmenko, D. van der Marel, S. M. Kazakov, N. D. Zhigadlo, and J. Karpinski, “Anisotropic optical conductivity and two colors of MgB2,” Phys. Rev. B 73(10), 104509 (2006).
[Crossref]

A. Balassis, E. V. Chulkov, P. M. Echenique, and V. M. Silkin, “First-principles calculations of dielectric and optical properties of MgB2,” Phys. Rev. B 78(22), 224502 (2008).
[Crossref]

V. M. Silkin, A. Balassis, P. M. Echenique, and E. V. Chulkov, “Ab initio calculation of low-energy collective charge-density excitations in MgB2,” Phys. Rev. B 80(5), 054521 (2009).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: almost complete absorption of light in nanoctructured metallic coating,” Phys. Rev. B 78(20), 205405 (2008).
[Crossref]

V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, “Plasmonic blackbody: strong absorption of light by metal nanoparticles embedded in dielectric matrix,” Phys. Rev. B 81(16), 165401 (2010).
[Crossref]

Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles study of MgB2 (0001) surfaces,” Phys. Rev. B 65(10), 100507 (2002).
[Crossref]

G. Profeta, A. Continenza, F. Bernardini, and S. Massidda, “Electronic and dynamical properties of the MgB2 surface: implications for the superconducting properties,” Phys. Rev. B 66(18), 184517 (2002).
[Crossref]

Phys. Rev. Lett. (6)

H. Uchiyama, K. M. Shen, S. Lee, A. Damascelli, D. H. Lu, D. L. Feng, Z.-X. Shen, and S. Tajima, “Electronic structure of MgB2 from angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 88(15), 157002 (2002).
[Crossref] [PubMed]

J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov, and L. L. Boyer, “Superconductivity of metallic boron in MgB2.,” Phys. Rev. Lett. 86(20), 4656–4659 (2001).
[Crossref] [PubMed]

J. M. An and W. E. Pickett, “Superconductivity of MgB2: covalent bonds driven metallic,” Phys. Rev. Lett. 86(19), 4366–4369 (2001).
[Crossref] [PubMed]

W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2.,” Phys. Rev. Lett. 88(5), 057001 (2002).
[Crossref] [PubMed]

J. W. Quilty, S. Lee, A. Yamamoto, and S. Tajima, “Superconducting gap in MgB(2): electronic Raman scattering measurements of single crystals,” Phys. Rev. Lett. 88(8), 087001 (2002).
[Crossref] [PubMed]

X. Li, Z. Li, and J. Yang, “Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light,” Phys. Rev. Lett. 112(1), 018301 (2014).
[Crossref] [PubMed]

Science (3)

J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan, and M. Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science 345(6204), 1593–1596 (2014).
[Crossref] [PubMed]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293(5528), 269–271 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic design of integrated photoelectrochemical cell using MgB2 as the photoanode and Pt as the cathode in distil water (18.2 MΩ/cm). (b) The optical micro image of a MgB2 layer of about 1 μm in thickness composed of fine grains with a wide distribution of orientations.(Top inset: hexagonal structure of MgB2 consisting of honeycomb B (yellow-red) layers with close-packed Mg (blue) layers between them.) (c) SEM image showing assembly of MgB2 layers.
Fig. 2
Fig. 2 Photocurrent as a function of time for the integrated water splitting device without external bias voltages under illumination by infrared-visible light: (a) Solar cell based on standard TiO2 photoanode under UV light. (b) Solar cell based on MgB2 layer deposited on Au (50nm) film, H2O splitting. (c) MgB2 layer deposited on Au (50nm) film, D2O splitting. (d) MgB2 layer deposited on Ag (50nm) film, H2O splitting. (e) MgB2 layer deposited on Cu (100 μm) foil, H2O splitting. (f) MgB2 layer deposited on Au (50nm) film for monochromatic laser irradiations.
Fig. 3
Fig. 3 Optical spectra of samples. (a) The Raman spectra of pure powder MgB2 and layered MgB2 samples freshly prepared and after treatment in photogenerated water split cell by H2O and D2O, respectively (b) The extinction spectra of layered MgB2 freshly prepared and after treatment in photogenerated water split cell by H2O and D2O (For comparison, spectrum of liquid solution of MgB2 powder in ethanol (solvent in proportional 1:50) is given).
Fig. 4
Fig. 4 (a) Schematic view of charge distribution in MgB2 and electric fields responsible for ion separation. (b) Overview of the energy level positions of surface electrons in MgB2 film with respect to the redox potential of H+/H2 (0 eV vs SHE). The top potential of surface electrons (π - like B) is more negative than the redox potential of H+/H2 (0 eV vs SHE) while the bottom potential of surface electrons (σ - like B) is more positive than the redox potential of O2/H2O (1.23 eV vs SHE). (c) Photocatalytic water splitting with two electrodes made of MgB2. The photocurrent as a function of time in process of water splitting with high conversion efficiency under (Vbias = 0.5 and 0.75 V). (d) Confirmation of a new class of photocatalysts material by using NbSe2 layer instead of MgB2 layer in photoelectrochemical cell.

Metrics