Abstract

An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photovoltaic performance of nanowire array solar cells with multiple diameters

Xin Yan, Lei Gong, Lingmei Ai, Wei Wei, Xia Zhang, and Xiaomin Ren
Opt. Express 26(26) A974-A983 (2018)

Absorption enhancement of GaInP nanowires by tailoring transparent shell thicknesses and its application in III-V nanowire/Si film two-junction solar cells

Xinhua Li, Tongfei Shi, Guangqiang Liu, Long Wen, BuKang Zhou, and Yuqi Wang
Opt. Express 23(19) 25316-25328 (2015)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
    [Crossref]
  2. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  3. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
    [Crossref] [PubMed]
  4. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [Crossref] [PubMed]
  5. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  6. M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
    [Crossref] [PubMed]
  7. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
    [Crossref]
  8. M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
    [Crossref] [PubMed]
  9. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
    [Crossref] [PubMed]
  10. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
    [Crossref] [PubMed]
  11. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  12. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref] [PubMed]
  13. A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
    [Crossref]
  14. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  15. Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
    [Crossref]
  16. Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
    [Crossref]
  17. X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
    [Crossref] [PubMed]
  18. Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
    [Crossref]
  19. C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
    [Crossref]
  20. N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
    [Crossref]
  21. L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
    [Crossref]
  22. W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
    [Crossref]
  23. M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
    [Crossref]
  24. N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
    [Crossref]
  25. L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
    [Crossref] [PubMed]
  26. K. D. Song, T. J. Kempa, H. G. Park, and S. K. Kim, “Laterally assembled nanowires for ultrathin broadband solar absorbers,” Opt. Express 22(S3Suppl 3), A992–A1000 (2014).
    [Crossref] [PubMed]
  27. K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
    [Crossref]
  28. M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Ternary, and Quaternary III–V Compounds (World Scientific, 1999), Vol. 2.
  29. G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
    [PubMed]
  30. Sentaurus TCAD Software Suite, Version D-2013.03, Synopsys Inc, (2013).
  31. D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes,” IEEE Trans. Electron. Dev. 29(2), 284–291 (1982).
    [Crossref]
  32. J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon,” Solid-State Electron. 25(8), 741–747 (1982).
    [Crossref]
  33. J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
    [Crossref]
  34. K. D. Song, T. J. Kempa, H. G. Park, and S. K. Kim, “Laterally assembled nanowires for ultrathin broadband solar absorbers,” Opt. Express 22(S3), A992–A1000 (2014).
    [Crossref] [PubMed]
  35. O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
    [Crossref]
  36. C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
    [Crossref] [PubMed]
  37. N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
    [Crossref] [PubMed]
  38. X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
    [Crossref]

2014 (6)

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

K. D. Song, T. J. Kempa, H. G. Park, and S. K. Kim, “Laterally assembled nanowires for ultrathin broadband solar absorbers,” Opt. Express 22(S3Suppl 3), A992–A1000 (2014).
[Crossref] [PubMed]

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

K. D. Song, T. J. Kempa, H. G. Park, and S. K. Kim, “Laterally assembled nanowires for ultrathin broadband solar absorbers,” Opt. Express 22(S3), A992–A1000 (2014).
[Crossref] [PubMed]

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref]

2013 (3)

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

2012 (5)

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

2011 (5)

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[Crossref]

Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
[Crossref]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

2010 (4)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

2009 (4)

C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

2008 (2)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

2007 (2)

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

2006 (1)

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

2003 (1)

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

1983 (1)

J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
[Crossref]

1982 (2)

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes,” IEEE Trans. Electron. Dev. 29(2), 284–291 (1982).
[Crossref]

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon,” Solid-State Electron. 25(8), 741–747 (1982).
[Crossref]

Aberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Åberg, I.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Abrand, A.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Anttu, N.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Arora, N. D.

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes,” IEEE Trans. Electron. Dev. 29(2), 284–291 (1982).
[Crossref]

Asoli, D.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Atwater, H. A.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Bermel, P.

Bleuse, J.

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Blumin, M.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Borgström, M.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Bu, S.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Bushmaker, A. W.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Cai, Y.

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Cao, X.

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Cao, Y.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Chamberlain, S. G.

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes,” IEEE Trans. Electron. Dev. 29(2), 284–291 (1982).
[Crossref]

Chan, S. K.

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Chan, Y. F.

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Chang, C. C.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Chen, C. C.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, P.

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Chi, C. Y.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Cirlin, G. E.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Colombo, C.

C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
[Crossref]

Cong, S.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Convertino, A.

A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
[Crossref]

Cronin, S. B.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Cuscuna, M.

A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
[Crossref]

Czaban, J. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Dapkus, P. D.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Demiche, O.

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Dubrovskii, V. G.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Fält, S.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Fiegna, C.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Fossum, J. G.

J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
[Crossref]

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon,” Solid-State Electron. 25(8), 741–747 (1982).
[Crossref]

Fountaine, K. T.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Garnett, E. C.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Glas, F.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Grätzel, M.

C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
[Crossref]

Gu, Z.

Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
[Crossref]

Guo, H.

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

Guo, Y.

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Harmand, J. C.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Heiss, M.

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Heiß, M.

C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
[Crossref]

Heurlin, M.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Hsu, C. M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Huang, J. H.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Huang, N.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Huffaker, D. L.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Kavanagh, K. L.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Kempa, T. J.

Khan, M. R.

Kim, D.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Kim, S. K.

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Kupec, J.

Kuyanov, P.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

Lalumondiere, S.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

LaPierre, R. R.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Lee, D. S.

J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
[Crossref]

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon,” Solid-State Electron. 25(8), 741–747 (1982).
[Crossref]

Li, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

Lin, C.

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

Lin, Y. T.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Liu, J. Q.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Liu, W. F.

W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[Crossref]

Lovergine, N.

Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
[Crossref]

Lundstrom, M.

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Mariani, G.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Mariette, H.

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Martelli, F.

A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
[Crossref]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Mei, X.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Mertens, R. P.

J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
[Crossref]

Michallon, J.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Morra, A. F.

C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
[Crossref]

Morral, A. F. I.

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

Nabet, B.

Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
[Crossref]

Nijs, J. F.

J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
[Crossref]

Oh, J. I.

W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[Crossref]

Park, H. G.

Peng, Z.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

Povinelli, M. L.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Prete, P.

Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
[Crossref]

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Roulston, D. J.

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes,” IEEE Trans. Electron. Dev. 29(2), 284–291 (1982).
[Crossref]

Rubini, S.

A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
[Crossref]

Ruda, H. E.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Samuelson, L.

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Sangiorgi, E.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Sartel, C.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Scofield, A.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Semenihin, I.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Seyedi, M. A.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Shen, W. Z.

W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[Crossref]

Shen, Y.

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

Sibirev, N. V.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Song, K. D.

Sou, I. K.

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Stoop, R. L.

Su, D. S.

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Sulima, O.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Tajik, N.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

Tchernycheva, M.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Theiss, J.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Thompson, D. A.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wang, N.

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

Wen, L.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

Whitney, W. S.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Wickert, P.

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Opt. Express 18(26), 27589–27605 (2010).
[Crossref] [PubMed]

Wu, Z. H.

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

Xie, W. Q.

W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[Crossref]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Yao, M.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Yeh, T. W.

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Zanuccoli, M.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Zeng, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Zhao, Z.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

Zhou, C.

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Zhou, Z.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Cai, S. K. Chan, I. K. Sou, Y. F. Chan, D. S. Su, and N. Wang, “The size-dependent growth direction of ZnSe nanowires,” Adv. Mater. 18(1), 109–114 (2006).
[Crossref]

Appl. Phys. Lett (1)

L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett.  91(23), 233117 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

Z. H. Wu, X. Mei, D. Kim, M. Blumin, H. E. Ruda, J. Q. Liu, and K. L. Kavanagh, “Growth, branching, and kinking of molecular-beam epitaxial< 110> GaAs nanowires,” Appl. Phys. Lett. 83(16), 3368–3370 (2003).
[Crossref]

C. Colombo, M. Heiß, M. Grätzel, and A. F. Morra, “Gallium arsenide pin radial structures for photovoltaic applications,” Appl. Phys. Lett. 94(17), 173108 (2009).
[Crossref]

L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99(14), 143116 (2011).
[Crossref]

W. Q. Xie, W. F. Liu, J. I. Oh, and W. Z. Shen, “Optical absorption in c-Si/a-Si: H core/shell nanowire arrays for photovoltaic applications,” Appl. Phys. Lett. 99(3), 033107 (2011).
[Crossref]

O. Demiche, M. Heiss, J. Bleuse, H. Mariette, and A. F. I. Morral, “Impact of surfaces on the optical properties of GaAs nanowires,” Appl. Phys. Lett. 97(20), 201907 (2010).
[Crossref]

IEEE Trans. Electron. Dev. (1)

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes,” IEEE Trans. Electron. Dev. 29(2), 284–291 (1982).
[Crossref]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (5)

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

A. Convertino, M. Cuscuna, S. Rubini, and F. Martelli, “Optical reflectivity of GaAs nanowire arrays: experiment and model,” J. Appl. Phys. 111(11), 114302 (2012).
[Crossref]

Z. Gu, P. Prete, N. Lovergine, and B. Nabet, “On optical properties of GaAs and GaAs/AlGaAs core-shell periodic nanowire arrays,” J. Appl. Phys. 109(6), 064314 (2011).
[Crossref]

N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys. 112(6), 064321 (2012).
[Crossref]

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

J. Comput. Electron. (1)

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

J. Phys. Chem. C (1)

X. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation,” J. Phys. Chem. C 112(51), 20560–20566 (2008).
[Crossref]

Nano Lett. (8)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs core--shell nanowires for photovoltaic applications,” Nano Lett. 9(1), 148–154 (2009).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C. Y. Chi, M. A. Seyedi, Y. T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, “Axial InP nanowire tandem junction grown on a silicon substrate,” Nano Lett. 11(5), 2028–2031 (2011).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

C. C. Chang, C. Y. Chi, M. Yao, N. Huang, C. C. Chen, J. Theiss, A. W. Bushmaker, S. Lalumondiere, T. W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, “Electrical and optical characterization of surface passivation in GaAs nanowires,” Nano Lett. 12(9), 4484–4489 (2012).
[Crossref] [PubMed]

Nano Res. (1)

N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, and M. Borgström, “Absorption of light in InP nanowire arrays,” Nano Res. 7(6), 816–823 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

X. Zhang, V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, C. Sartel, M. Tchernycheva, J. C. Harmand, and F. Glas, “Growth of inclined GaAs nanowires by molecular beam epitaxy: theory and experiment,” Nanoscale Res. Lett. 5(10), 1692–1697 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Opt. Express (4)

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Solid-State Electron. (2)

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon,” Solid-State Electron. 25(8), 741–747 (1982).
[Crossref]

J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs, “Carrier recombination and lifetime in highly doped silicon,” Solid-State Electron. 26(6), 569–576 (1983).
[Crossref]

Other (2)

Sentaurus TCAD Software Suite, Version D-2013.03, Synopsys Inc, (2013).

M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Ternary, and Quaternary III–V Compounds (World Scientific, 1999), Vol. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) 3-D illustration of the inclined NWA solar cell. (b) Schematic drawings of GaAs NWs with orientation of <110> and <112> grow on <111> substrates. The inset illustrates the illumination geometry for the TE and TM polarizations.
Fig. 2
Fig. 2 The 3-D total optical generation profiles under AM 1.5G illumination in half of the structure, which correspond to the vertical NWAs (a) and inclined NWAs with growth direction along <112> (b) and <110> (c) on <111> substrates, respectively.
Fig. 3
Fig. 3 The absorption spectra of whole NW (solid lines) and i-region (dash lines) under TE polarization (a) and TM polarization (b) of the simulated GaAs inclined NWA in the case of <112> and <110> on <111> substrates compared with their vertical counterparts. (c) vertical cross sections of optical generation profiles at wavelength of 600 nm and 800 nm. The diameter and D/P ratio of the NWA are fixed at 200 nm and 0.5.
Fig. 4
Fig. 4 The simulated J-V characteristics of the vertical NWA and inclined NWA with growth direction of <110> and <112> on <111> substrates. The Jsc and conversion efficiency are normalized to the substrate area and the detailed performance parameters are summarized in the figure.
Fig. 5
Fig. 5 The absorption of i-region under different D/P ratios (a) and radius (b). The conversion efficiency under different D/P ratios (c) and radius (d).
Fig. 6
Fig. 6 The conversion efficiency with different proportions of i region (a) and lengths of NW (b). The diameter and D/P ratio of the NWA are fixed at 200 nm and 0.5.
Fig. 7
Fig. 7 The Jsc (a), Voc (b) and conversion efficiency (c) of the solar cells with various SRVs for both inclined and vertical NWAs. The diameter and D/P ratio of the NWAs are fixed at 200 nm and 0.5.
Fig. 8
Fig. 8 The simulated J-V characteristics of the vertical NWA and inclined NWA with growth direction of <110> and <112> on <111>, composed of InP (a) and Silicon (b), the detailed performance parameters are summarized in the figure. The diameter and D/P ratio of the NWA are fixed at 200 nm and 0.5.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G ph = | S | 2ω = ε | E | 2 2 .

Metrics