Abstract

Abstract: Layer boundary (base and top) detection is a basic problem in lidar data processing, the results of which are used as inputs of optical properties retrieval. However, traditional algorithms not only require manual intervention but also rely heavily on the signal-to-noise ratio. Therefore, we propose a robust and automatic algorithm for layer detection based on a novel algorithm for lidar signal segmentation and representation. Our algorithm is based on the lidar equation and avoids most of the limitations of the traditional algorithms. Testing of the simulated and real signals shows that the algorithm is able to position the base and top accurately even with a low signal to noise ratio. Furthermore, the results of the classification are accurate and satisfactory. The experimental results confirm that our algorithm can be used for automatic detection, retrieval, and analysis of lidar data sets.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear segmentation algorithm for detecting layer boundary with lidar

Feiyue Mao, Wei Gong, and Timothy Logan
Opt. Express 21(22) 26876-26887 (2013)

Simple multiscale algorithm for layer detection with lidar

Feiyue Mao, Wei Gong, and Zhongmin Zhu
Appl. Opt. 50(36) 6591-6598 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, 2002).
  2. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).
  3. J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.
  4. D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
    [Crossref]
  5. S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31(10), 1488–1494 (1992).
    [Crossref] [PubMed]
  6. F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt. 50(36), 6591–6598 (2011).
    [Crossref] [PubMed]
  7. V. A. Kovalev, J. Newton, C. Wold, and W. M. Hao, “Simple algorithm to determine the near-edge smoke boundaries with scanning lidar,” Appl. Opt. 44(9), 1761–1768 (2005).
    [Crossref] [PubMed]
  8. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34(30), 7019–7031 (1995).
    [Crossref] [PubMed]
  9. D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
    [Crossref]
  10. F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
    [Crossref]
  11. J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol. 25(5), 685–700 (2008).
    [Crossref]
  12. Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40(10), 1665–1682 (2001).
    [Crossref]
  13. Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
    [Crossref]
  14. C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).
  15. W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
    [Crossref]
  16. F. Mao, W. Gong, and T. Logan, “Linear segmentation algorithm for detecting layer boundary with lidar,” Opt. Express 21(22), 26876–26887 (2013).
    [Crossref] [PubMed]
  17. C. Li, Z. Pan, F. Mao, W. Gong, S. Chen, and Q. Min, “De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method,” Opt. Express 23(20), 26509–26520 (2015).
    [Crossref]
  18. W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284(12), 2966–2971 (2011).
    [Crossref]
  19. D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. Geo. 10, 112–122 (1973).
  20. E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings of the 2001 IEEE International Conference on Data Mining (IEEE, 2001), 289–296.
    [Crossref]
  21. F. Mao, W. Wang, Q. Min, and W. Gong, “Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods,” Opt. Express 23(11), A604–A613 (2015).
    [Crossref] [PubMed]
  22. F. Rocadenbosch, A. Comerón, and L. Albiol, “Statistics of the slope-method estimator,” Appl. Opt. 39(33), 6049–6057 (2000).
    [Crossref] [PubMed]
  23. F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
    [Crossref]
  24. F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS, 2007), pp. 4372–4375.
    [Crossref]

2015 (2)

2014 (1)

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

2013 (2)

F. Mao, W. Gong, and T. Logan, “Linear segmentation algorithm for detecting layer boundary with lidar,” Opt. Express 21(22), 26876–26887 (2013).
[Crossref] [PubMed]

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
[Crossref]

2011 (3)

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284(12), 2966–2971 (2011).
[Crossref]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt. 50(36), 6591–6598 (2011).
[Crossref] [PubMed]

2010 (1)

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
[Crossref]

2008 (1)

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol. 25(5), 685–700 (2008).
[Crossref]

2007 (1)

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
[Crossref]

2005 (1)

2003 (1)

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[Crossref]

2001 (1)

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40(10), 1665–1682 (2001).
[Crossref]

2000 (1)

1995 (1)

1994 (1)

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

1992 (1)

1973 (1)

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. Geo. 10, 112–122 (1973).

Albiol, L.

Ansmann, A.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Backmann, C.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Baldasano, J. M.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Balis, D.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Calpini, B.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Campbell, J. R.

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol. 25(5), 685–700 (2008).
[Crossref]

Carswell, A. I.

Chaikovsky, A.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Chen, S.

Chu, S.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings of the 2001 IEEE International Conference on Data Mining (IEEE, 2001), 289–296.
[Crossref]

Comerón, A.

Douglas, D. H.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. Geo. 10, 112–122 (1973).

Drobinski, P.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
[Crossref]

Flamant, P.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Gong, W.

F. Mao, W. Wang, Q. Min, and W. Gong, “Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods,” Opt. Express 23(11), A604–A613 (2015).
[Crossref] [PubMed]

C. Li, Z. Pan, F. Mao, W. Gong, S. Chen, and Q. Min, “De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method,” Opt. Express 23(20), 26509–26520 (2015).
[Crossref]

F. Mao, W. Gong, and T. Logan, “Linear segmentation algorithm for detecting layer boundary with lidar,” Opt. Express 21(22), 26876–26887 (2013).
[Crossref] [PubMed]

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
[Crossref]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt. 50(36), 6591–6598 (2011).
[Crossref] [PubMed]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284(12), 2966–2971 (2011).
[Crossref]

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
[Crossref]

Haeffelin, M.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
[Crossref]

Hao, W. M.

Hart, D.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings of the 2001 IEEE International Conference on Data Mining (IEEE, 2001), 289–296.
[Crossref]

Hgrd, A.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Keogh, E.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings of the 2001 IEEE International Conference on Data Mining (IEEE, 2001), 289–296.
[Crossref]

Kovalev, V. A.

Li, C.

Li, J.

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284(12), 2966–2971 (2011).
[Crossref]

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
[Crossref]

Li, Z.

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Liu, D.

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Logan, T.

Mao, F.

F. Mao, W. Wang, Q. Min, and W. Gong, “Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods,” Opt. Express 23(11), A604–A613 (2015).
[Crossref] [PubMed]

C. Li, Z. Pan, F. Mao, W. Gong, S. Chen, and Q. Min, “De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method,” Opt. Express 23(20), 26509–26520 (2015).
[Crossref]

F. Mao, W. Gong, and T. Logan, “Linear segmentation algorithm for detecting layer boundary with lidar,” Opt. Express 21(22), 26876–26887 (2013).
[Crossref] [PubMed]

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
[Crossref]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt. 50(36), 6591–6598 (2011).
[Crossref] [PubMed]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284(12), 2966–2971 (2011).
[Crossref]

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
[Crossref]

McCormick, M. P.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[Crossref]

Min, Q.

Mitev, V.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Morille, Y.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
[Crossref]

Newton, J.

Pal, S. R.

Pan, Z.

Pazzani, M.

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings of the 2001 IEEE International Conference on Data Mining (IEEE, 2001), 289–296.
[Crossref]

Pelon, J.

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
[Crossref]

Pelon, J. R.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[Crossref]

Peucker, T. K.

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. Geo. 10, 112–122 (1973).

Rocadenbosch, F.

Sassen, K.

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol. 25(5), 685–700 (2008).
[Crossref]

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40(10), 1665–1682 (2001).
[Crossref]

Senberg, J. B.

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

Song, S.

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
[Crossref]

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

Steinbrecht, W.

Vaughan, M. A.

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

Wang, Q.

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Wang, W.

Wang, Y.

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Wang, Z.

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40(10), 1665–1682 (2001).
[Crossref]

Welton, E. J.

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol. 25(5), 685–700 (2008).
[Crossref]

Winker, D. M.

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[Crossref]

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

Wold, C.

Young, S. A.

Zhang, J.

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
[Crossref]

Zhao, C.

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Zhu, Z.

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
[Crossref]

F. Mao, W. Gong, and Z. Zhu, “Simple multiscale algorithm for layer detection with lidar,” Appl. Opt. 50(36), 6591–6598 (2011).
[Crossref] [PubMed]

Acta Opt. Sin. (1)

F. Mao, W. Gong, J. Li, and J. Zhang, “Cloud detection and coefficient retrieve based on improved differential zero-crossing method for mie lidar,” Acta Opt. Sin. 30(11), 3097–3102 (2010).
[Crossref]

Appl. Opt. (5)

Atmos. Res. (1)

D. M. Winker and M. A. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

Int. J. Geo. Inf. Geo. (1)

D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a digitized line or its caricature,” Int. J. Geo. Inf. Geo. 10, 112–122 (1973).

J. Appl. Meteorol. (1)

Z. Wang and K. Sassen, “Cloud type and macrophysical property retrieval using multiple remote sensors,” J. Appl. Meteorol. 40(10), 1665–1682 (2001).
[Crossref]

J. Atmos. Ocean. Technol. (2)

Y. Morille, M. Haeffelin, P. Drobinski, and J. Pelon, “STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data,” J. Atmos. Ocean. Technol. 24(5), 761–775 (2007).
[Crossref]

J. R. Campbell, K. Sassen, and E. J. Welton, “Elevated cloud and aerosol layer retrievals from micropulse lidar signal profiles,” J. Atmos. Ocean. Technol. 25(5), 685–700 (2008).
[Crossref]

J. Geophys. Res. (1)

C. Zhao, Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, “A new cloud and aerosol layer detection method based on micropulse lidar measurements,” J. Geophys. Res. 119, 6788–6802 (2014).

Meteorol. Atmos. Phys. (1)

W. Gong, F. Mao, and S. Song, “Signal simplification and cloud detection with an improved Douglas-Peucker algorithm for single-channel lidar,” Meteorol. Atmos. Phys. 113(1-2), 89–97 (2011).
[Crossref]

Opt. Commun. (1)

W. Gong, F. Mao, and J. Li, “OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar,” Opt. Commun. 284(12), 2966–2971 (2011).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

F. Mao, W. Gong, S. Song, and Z. Zhu, “Determination of the boundary layer top from lidar backscatter profiles using a Haar wavelet method over Wuhan, China,” Opt. Laser Technol. 49, 343–349 (2013).
[Crossref]

Proc. SPIE (1)

D. M. Winker, J. R. Pelon, and M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003).
[Crossref]

Other (5)

E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings of the 2001 IEEE International Conference on Data Mining (IEEE, 2001), 289–296.
[Crossref]

K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, 2002).

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).

J. B. Senberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Backmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hgrd, and V. Mitev, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing (SPIE, 2001), pp, 155–158.

F. Rocadenbosch, M. Sicard, M. N. M. Reba, and S. Tomas, “Morphological tools for range-interval segmentation of elastic lidar signals,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS, 2007), pp. 4372–4375.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Example of the first segmentation step in the segmentation of a real signal: (a) dm = 67.36 is obtained at r = 675 m, which is greater than dthr , and (b) the signal is segmented into the left and right parts. The x-axis (altitude) is shown in logarithmic scale to present the details.
Fig. 2
Fig. 2 Simulation for illustrating the difference of the slope and extinction in lidar layer detection. (a) The signal of clear air and layer is in blue and red, respectively. (b) The slope of the signal of clear air and layer are in blue and red, respectively. The referential slope (i.e., zero line) is in gray (c) The extinction coefficient of clear air and layer are in blue and red, respectively. The referential extinction coefficient is in gray.
Fig. 3
Fig. 3 Detection of real signal at 21:26 on December 25, 2008 in Wuhan. (a) The signal, the break bins, and the linear fitted lines are in blue, gray, and red, respectively. (b) The slope of the fitted lines is in red. (c) The range-corrected signal, the break bins, and the nonlinear fitted lines are in blue, gray, and red, respectively. (d) The extinction coefficient αf (r) of the fitted lines is in red. (e) The original signal is in blue, and the nonlinear fitted and extrapolated lines are in red. (f) The range corrected signal is in blue, and the accepted aerosol and cloud layers detections based on αf (r) are in orange and red, respectively.
Fig. 4
Fig. 4 Detection results of the simulated layers at 4 km to 5 km with different noise levels. The standard deviation of the Gaussian noise of the signal shown in (b) to (d) are two, three, and four times that shown in (a), respectively. Blue denotes the original signal, and red denotes the accepted detections. Black, green, and yellow error bars of the base and top are obtained using the simple multiscale, linear segmentation, and nonlinear segmentation algorithms, respectively, which are calculated from 100 groups of simulations.
Fig. 5
Fig. 5 Time–altitude diagrams of ln[P(r)r 2] with layer boundaries detected using a 532 nm Mie lidar on December 25 and 26, 2008 in Wuhan, China. (a) Boundaries of the aerosol (gray curve) and cloud (black curve) layers detected using the simple multiscale algorithm are plotted. (b) and (c) are the same as (a), but are detected using the linear and nonlinear segmentation algorithms, respectively.
Fig. 6
Fig. 6 Correlation analysis of the three algorithms. (left panels) Scatter plots of the layer base (with “o” markers in blue) and top (with “+” markers in red) detected using the simple multiscale, linear segmentation, and nonlinear segmentation algorithms at 1 km to 4.5 km. (right panels) the same as the left panels, but for 7 km to 12 km.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = 1 r 2 c G ( r ) A T 1 2 β ( r ) exp [ 2 r 1 r α ( r ) d r ] + e ( r ) ,
P i ( r ) = 1 r 2 C exp [ 2 α ( r r 1 ) ] + e ( r ) ,
C = P ( r 1 ) r 1 2 ,
α = ln [ P ( r 2 ) r 2 2 C ] / [ 2 ( r 2 r 1 ) ] .
d t h r = Δ P + 6 σ ,
Δ = r = r 1 r 2 { P ( r ) 1 r 2 C f exp [ 2 α f ( r r 1 ) ] } 2 ,
β p ( r p ) > 12 σ r p 2 C T 2 ( r p ) ,
R = P ( r p ) r p 2 / P ( r b ) r b 2 .

Metrics