Abstract

The angular dependence of light-trapping in nanophotonic thin-film solar cells is inherent due to the wavelength-scale dimensions of the periodic nanopatterns. In this paper, we experimentally investigate the dependence of light coupling to waveguide modes for light trapping in a-Si:H solar cells deposited on nanopatterned back contacts. First, we accurately determine the spectral positions of individual waveguide modes in thin-film solar cells in external quantum efficiency and absorptance. Second, we demonstrate the strong angular dependence of this spectral position for our solar cells. Third, a moderate level of disorder is introduced to the initially periodic nanopattern of the back contacts. As a result, the angular dependence is reduced. Last, we experimentally compare this dependence on the angle of incidence for randomly textured, 2D periodically nanopatterned and 2D disordered back contacts in external quantum efficiency and short-circuit current density.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

Light trapping in thin-film silicon solar cells with submicron surface texture

Rahul Dewan, Marko Marinkovic, Rodrigo Noriega, Sujay Phadke, Alberto Salleo, and Dietmar Knipp
Opt. Express 17(25) 23058-23065 (2009)

Light trapping in ultrathin plasmonic solar cells

Vivian E. Ferry, Marc A. Verschuuren, Hongbo B. T. Li, Ewold Verhagen, Robert J. Walters, Ruud E. I. Schropp, Harry A. Atwater, and Albert Polman
Opt. Express 18(S2) A237-A245 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Green, Solar cells—Operating Principles, Technology and System Applications (Prentice-Hall, 1986).
  2. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [Crossref]
  3. M. Kambe, A. Takahashi, N. Taneda, K. Masumo, T. Oyama, and K. Sato, “Fabrication of A-Si:H Solar cells on high haze SnO2:F thin films,” in 2008 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008), pp. 1–4.
  4. C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
    [Crossref]
  5. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [Crossref] [PubMed]
  6. R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
    [Crossref]
  7. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  8. U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
    [Crossref]
  9. K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
    [Crossref]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
    [Crossref] [PubMed]
  11. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
    [Crossref]
  12. C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  13. P. Mialhe, S. Mouhamed, and A. Haydar, “The solar cell output power dependence on the angle of incident radiation,” Renew. Energy 1(3-4), 519–521 (1991).
    [Crossref]
  14. A. Heinämäki and G. Guekos, “Solar cell short-circuit current dependence on the angle of the incident radiation,” Solar Cells 20(1), 65–73 (1987).
    [Crossref]
  15. A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
    [Crossref]
  16. I. Tobías, A. Luque, and A. Martí, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008).
    [Crossref]
  17. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [Crossref] [PubMed]
  18. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
    [Crossref] [PubMed]
  19. A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).
  20. U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
    [Crossref]
  21. M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
    [Crossref]
  22. F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
    [Crossref]
  23. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  24. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(6), A1219–A1230 (2011).
    [Crossref] [PubMed]
  25. M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).
  26. U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
    [Crossref]
  27. V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
    [Crossref]
  28. S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
    [Crossref]
  29. K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
    [Crossref]

2014 (2)

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

2013 (3)

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

2012 (2)

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

2011 (4)

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(6), A1219–A1230 (2011).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

2010 (4)

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[Crossref] [PubMed]

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

2009 (2)

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

2008 (4)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

I. Tobías, A. Luque, and A. Martí, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

2007 (1)

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

2001 (1)

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[Crossref]

1999 (1)

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

1991 (1)

P. Mialhe, S. Mouhamed, and A. Haydar, “The solar cell output power dependence on the angle of incident radiation,” Renew. Energy 1(3-4), 519–521 (1991).
[Crossref]

1987 (1)

A. Heinämäki and G. Guekos, “Solar cell short-circuit current dependence on the angle of the incident radiation,” Solar Cells 20(1), 65–73 (1987).
[Crossref]

Alexander, D. T. L.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Ballif, C.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

Battaglia, C.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Bhattacharya, J.

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Biswas, R.

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Bittkau, K.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

Boccard, M.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Böttler, W.

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Cantoni, M.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Carius, R.

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(6), A1219–A1230 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Chakravarty, N.

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Charrière, M.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Cubero, O.

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Cui, Y.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Dalal, V.

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Das, C.

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Despeisse, M.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Dewan, R.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Eisele, C.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[Crossref]

Ermes, M.

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

Escarré, J.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Faÿ, S.

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2), A237–A245 (2010).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Finger, F.

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Gordijn, A.

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

Guekos, G.

A. Heinämäki and G. Guekos, “Solar cell short-circuit current dependence on the angle of the incident radiation,” Solar Cells 20(1), 65–73 (1987).
[Crossref]

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Haug, F. J.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

Haug, F.-J.

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Haug, F.-J. J.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Haydar, A.

P. Mialhe, S. Mouhamed, and A. Haydar, “The solar cell output power dependence on the angle of incident radiation,” Renew. Energy 1(3-4), 519–521 (1991).
[Crossref]

Heinämäki, A.

A. Heinämäki and G. Guekos, “Solar cell short-circuit current dependence on the angle of the incident radiation,” Solar Cells 20(1), 65–73 (1987).
[Crossref]

Herzig, H. P.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

Hsu, C.-M. M.

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hülsbeck, M.

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Kirchhoff, J.

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

Knipp, D.

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

Lambertz, A.

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Lewis, B.

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Li, H. B. T.

Luque, A.

I. Tobías, A. Luque, and A. Martí, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008).
[Crossref]

Maddalena, P.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Martí, A.

I. Tobías, A. Luque, and A. Martí, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008).
[Crossref]

Meier, M.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Melle, T.

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Merdzhanova, T.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

Mialhe, P.

P. Mialhe, S. Mouhamed, and A. Haydar, “The solar cell output power dependence on the angle of incident radiation,” Renew. Energy 1(3-4), 519–521 (1991).
[Crossref]

Michaelis, D.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Michard, S.

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

Mouhamed, S.

P. Mialhe, S. Mouhamed, and A. Haydar, “The solar cell output power dependence on the angle of incident radiation,” Renew. Energy 1(3-4), 519–521 (1991).
[Crossref]

Moulin, E.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(6), A1219–A1230 (2011).
[Crossref] [PubMed]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Naqavi, A.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

Nebel, C. E.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[Crossref]

Oliveira, N.

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Paeder, V.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

Paetzold, U. W.

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(6), A1219–A1230 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Parretta, A.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Pieters, B. E.

Polman, A.

Prömpers, M.

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Rau, U.

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, “Design of nanostructured plasmonic back contacts for thin-film silicon solar cells,” Opt. Express 19(6), A1219–A1230 (2011).
[Crossref] [PubMed]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Sarno, A.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Scharf, T.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

Schropp, R. E. I.

Smeets, M.

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Smirnov, V.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Söderström, K.

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19(1), 128–140 (2011).
[Crossref] [PubMed]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Steinhauser, J.

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

Stutzmann, M.

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[Crossref]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Tobías, I.

I. Tobías, A. Luque, and A. Martí, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008).
[Crossref]

Tortora, P.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Vallat-Sauvain, E.

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Verhagen, E.

Verschuuren, M. A.

Wächter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

Waechter, C.

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

Walters, R. J.

Wang, A.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Yakubu, H.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Zhang, W.

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

Zhao, J.

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

ACS Nano (1)

C. Battaglia, C.-M. M. Hsu, K. Söderström, J. Escarré, F.-J. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

U. W. Paetzold, M. Smeets, M. Meier, K. Bittkau, T. Merdzhanova, V. Smirnov, D. Michaelis, C. Waechter, R. Carius, and U. Rau, “Disorder improves nanophotonic light trapping in thin-film solar cells,” Appl. Phys. Lett. 104(13), 131102 (2014).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99(18), 181105 (2011).
[Crossref]

K. Söderström, F.-J. Haug, J. Escarré, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96(21), 213508 (2010).
[Crossref]

J. Appl. Phys. (5)

K. Bittkau, W. Böttler, M. Ermes, V. Smirnov, and F. Finger, “Light scattering at textured back contacts for n-i-p thin-film silicon solar cells,” J. Appl. Phys. 111(8), 083101 (2012).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys. 89(12), 7722 (2001).
[Crossref]

R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009).
[Crossref]

I. Tobías, A. Luque, and A. Martí, “Light intensity enhancement by diffracting structures in solar cells,” J. Appl. Phys. 104(3), 034502 (2008).
[Crossref]

J. Photonics Energy (1)

M. Smeets, V. Smirnov, M. Meier, K. Bittkau, R. Carius, U. Rau, and U. W. Paetzold, “On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells,” J. Photonics Energy 5(1), 057004 (2014).
[Crossref]

Mater. Sci. Eng. B (2)

U. W. Paetzold, W. Zhang, M. Prömpers, J. Kirchhoff, T. Merdzhanova, S. Michard, R. Carius, A. Gordijn, and M. Meier, “Thin-film silicon solar cell development on imprint-textured glass substrates,” Mater. Sci. Eng. B 178(9), 617–622 (2013).
[Crossref]

V. Smirnov, C. Das, T. Melle, A. Lambertz, M. Hülsbeck, R. Carius, and F. Finger, “Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells,” Mater. Sci. Eng. B 159–160, 44–47 (2009).
[Crossref]

Nano Lett. (1)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, and A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells,” Opt. Commun. 172(1-6), 139–151 (1999).
[Crossref]

Opt. Express (4)

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[Crossref] [PubMed]

Prog. Photovolt. Res. Appl. (2)

A. Naqavi, F. J. Haug, K. Söderström, C. Battaglia, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Angular behavior of the absorption limit in thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 1002, 2371 (2013).

M. Meier, U. W. Paetzold, M. Prömpers, T. Merdzhanova, R. Carius, and A. Gordijn, “UV nanoimprint for the replication of etched ZnO:Al textures applied in thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(12), 1226–1236 (2013).

Renew. Energy (1)

P. Mialhe, S. Mouhamed, and A. Haydar, “The solar cell output power dependence on the angle of incident radiation,” Renew. Energy 1(3-4), 519–521 (1991).
[Crossref]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells 94(12), 2337–2342 (2010).
[Crossref]

Solar Cells (1)

A. Heinämäki and G. Guekos, “Solar cell short-circuit current dependence on the angle of the incident radiation,” Solar Cells 20(1), 65–73 (1987).
[Crossref]

Thin Solid Films (1)

S. Faÿ, J. Steinhauser, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, “Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells,” Thin Solid Films 515(24), 8558–8561 (2007).
[Crossref]

Other (2)

M. Kambe, A. Takahashi, N. Taneda, K. Masumo, T. Oyama, and K. Sato, “Fabrication of A-Si:H Solar cells on high haze SnO2:F thin films,” in 2008 33rd IEEE Photovoltaic Specialists Conference (IEEE, 2008), pp. 1–4.

M. A. Green, Solar cells—Operating Principles, Technology and System Applications (Prentice-Hall, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 a) Scanning electron microscopy (SEM) image of the cross-section of a hydrogenated amorphous silicon thin-film solar cell in substrate configuration with a plasmonic reflection grating back contact (PRGBC). b) External quantum efficiency (EQE)(full lines) and absorptance (A)(dotted lines) of thin-film solar cells with the layer stack shown in a). The back contact is either periodically nanopatterned (red), randomly textured (black) or flat (gray).
Fig. 2
Fig. 2 a) Scheme of a thin-film solar cell illuminated with light polarized in x-direction. The sample is tilted between zero and twelve degrees using the y-axis as rotation axis. b) EQE of a thin-film solar cell processed on a PRGBC with a period of 500 nm measured under different angles of incidence.
Fig. 3
Fig. 3 a) Scheme of a thin-film solar cell illuminated with light polarized in x-direction (0° polarization). b) Scheme of a solar cell with light polarized parallel to the y-direction (90° polarized). c) External quantum efficiency (EQE) and absorptance (A) of a hydrogenated amorphous silicon thin film solar cell processed on a PRGBC with a period of 500 nm. The polarization is varied in steps of 10° between 0° (black line) and 90° (red line). The sample is rotated around the y-axis by 8°.
Fig. 4
Fig. 4 a) Gaussian distribution function of the possible displacement of nanostructures from the positions for a perfectly periodic arrangement. b) External quantum efficiency (EQE) of thin-film solar cells processed on plasmonic reflection grating back contacts (PRGBC) with a period of 500 nm and a relative standard deviation (σrel) of zero percent and twelve percent under normal incidence in all direction.
Fig. 5
Fig. 5 a) Scheme of a thin-film solar cell illuminated with light polarized in x direction (0° polarized) at an angle of incidence of eight degrees. b) Scheme of a solar cell with light polarized in y direction (90° polarized). c) Absorptance (A) of a hydrogenated amorphous silicon thin film solar cell processed on disordered plasmonic reflection grating back contacts (PRGBC) with a period of 500 nm under different polarizations.
Fig. 6
Fig. 6 a) Δ External quantum efficiency (EQE) as a function of the wavelength and the angle of incidence in the wavelength-range between 360 nm and 790 nm of hydrogenated amorphous thin-film solar cells. The solar cells are deposited on (a) a randomly textured substrate, (b) a periodically structured and (c) a structured substrate with a σrel of 12%. The incident light is polarized in x-direction.
Fig. 7
Fig. 7 Δ External quantum efficiency (EQE) as a function of the wavelength and the angle of incidence in the wavelength-range between 360 nm and 790 nm of hydrogenated amorphous thin-film solar cells. a) for a periodically structured thin-film solar cell and b) a thin-film solar cell with disordered structures with a σrel of twelve percent; Incident light is polarized in y direction
Fig. 8
Fig. 8 Short-circuit current density (rel. JSC) of hydrogenated amorphous thin-film solar cells with a thickness of the i-layer of 280 nm as a function of the angle of incidence normalized to the short-circuit current density for an angle of incidence of 0°. The solar cells are deposited on a periodically textured substrate, a textured substrate with a σrel of twelve percent and a randomly textured substrate.

Tables (1)

Tables Icon

Table 1 Fill factor, open-circuit voltage, short-circuit current density and power conversion efficiency of hydrogenated amorphous silicon thin-film solar cells with an i-layer thickness of 280 nm deposited on various substrates

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2π λ n2dcos( α )+ϕ+π=2πm
ΔEQE( α,λ )= EQE( α,λ ) / EQE( 0°,λ )1

Metrics