Abstract

This article demonstrates the benefits of complementing a daylight-lit environment with a spectrally tunable illumination system. The spectral components of daylight present in the room are measured by a low-cost miniature spectrophotometer and processed through a number of optimization algorithms, carefully trading color fidelity for energy efficiency. Spectrally-tunable luminaires provide only those wavelengths that ensure that either the final illumination spectrum inside the room is kept constant or carefully follows the dynamic spectral pattern of natural daylight. Analyzing the measured data proves that such a hybrid illumination system brings both unprecendented illumination quality and significant energy savings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Illumination performance and energy saving of a solar fiber optic lighting system

David Lingfors and Tarja Volotinen
Opt. Express 21(S4) A642-A655 (2013)

Energy efficiency and color quality limits in artificial light sources emulating natural illumination

Wim Hertog, Aleix Llenas, Jesús M. Quintero, Charles E. Hunt, and Josep Carreras
Opt. Express 22(S7) A1659-A1668 (2014)

Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting

Qi Dai, Qifeng Shan, Hien Lam, Luoxi Hao, Yi Lin, and Zhe Cui
Opt. Express 24(18) 20049-20059 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Global Efficient Lighting Forum, “Policy options to accelerate the global transition to advanced lighting”, http://www.enlighten-initiative.org/Portals/0/documents/global-forum/Green_Paper_FINAL%20reduced.pdf (2014)
  2. S. Veeramas and C. Chuntamara, “The evaluation of lighting energy saving in open-plan office building with Daylight-linked system in Bangkok: an experimental study,” in 2nd Chulalongkorn University Architectural Design Symposium (CU:ADS, 2011), pp. 1-19
  3. C. Yavuz, E. Yanikoglu, and O. Guler, “Determination of real energy saving potential of daylight responsive systems: a case study from Turkey,” Light Eng. 18(2), 99–105 (2010).
  4. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
    [Crossref] [PubMed]
  5. F. A. J. L. Scheer, L. J. P. van Doornen, and R. M. Buijs, “Light and diurnal cycle affect human heart rate: possible role for the circadian pacemaker,” J. Biol. Rhythms 14(3), 202–212 (1999).
    [Crossref] [PubMed]
  6. P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
    [Crossref] [PubMed]
  7. G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
    [Crossref] [PubMed]
  8. A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
    [Crossref] [PubMed]
  9. C. Cajochen, “Alerting effects of light,” Sleep Med. Rev. 11(6), 453–464 (2007).
    [Crossref] [PubMed]
  10. C. M. Gropp, “Regulation of melanopsin and PACAP mRNA by light, circadian and sleep homeostatic processes,” Medizinischen Fakultät Charité – Universitätsmedizin Berlin, PhD dissertation (2014)
  11. W. Hertog, A. Llenas, J. M. Quintero, C. E. Hunt, and J. Carreras, “Energy efficiency and color quality limits in artificial light sources emulating natural illumination,” Opt. Express 22(S7Suppl 7), A1659–A1668 (2014).
    [Crossref] [PubMed]
  12. D. Caicedo, A. Pandharipande, and F. M. J. Willems, “Daylight adaptive lighting control using light sensor calibration prior information,” Energy Build. 73, 105–114 (2014).
    [Crossref]
  13. B. Tralau and C. Schierz, “The preference of colour temperature depending on daylight and weather,” in CIE Proceedings Lighting Quality and Energy Efficiency (CIE, 2014), paper x039.
  14. M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid-state lighting using a sensor network,” Proc. SPIE 7784, 105–114 (2010).
  15. W. Pierpoint, “Equi-visibility lighting control system”, United States Patent 4,273,999 (1981)
  16. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
    [Crossref]
  17. Commission Internationale de l’Eclairage (CIE), “Method of specifying and measuring color rendering properties of light sources,” CIE Publication 13.3 (1995).
  18. J. M. Quintero, A. Sudrià, C. E. Hunt, and J. Carreras, “Color rendering map: a graphical metric for assessment of illumination,” Opt. Express 20(5), 4939–4956 (2012).
    [Crossref] [PubMed]
  19. The Munsell book of color X-Rite glossy collection (X-Rite Europe GmbH, 2010).

2014 (2)

W. Hertog, A. Llenas, J. M. Quintero, C. E. Hunt, and J. Carreras, “Energy efficiency and color quality limits in artificial light sources emulating natural illumination,” Opt. Express 22(S7Suppl 7), A1659–A1668 (2014).
[Crossref] [PubMed]

D. Caicedo, A. Pandharipande, and F. M. J. Willems, “Daylight adaptive lighting control using light sensor calibration prior information,” Energy Build. 73, 105–114 (2014).
[Crossref]

2012 (1)

2010 (2)

M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid-state lighting using a sensor network,” Proc. SPIE 7784, 105–114 (2010).

C. Yavuz, E. Yanikoglu, and O. Guler, “Determination of real energy saving potential of daylight responsive systems: a case study from Turkey,” Light Eng. 18(2), 99–105 (2010).

2007 (1)

C. Cajochen, “Alerting effects of light,” Sleep Med. Rev. 11(6), 453–464 (2007).
[Crossref] [PubMed]

2006 (1)

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

2002 (2)

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

1999 (1)

F. A. J. L. Scheer, L. J. P. van Doornen, and R. M. Buijs, “Light and diurnal cycle affect human heart rate: possible role for the circadian pacemaker,” J. Biol. Rhythms 14(3), 202–212 (1999).
[Crossref] [PubMed]

1991 (1)

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

1980 (1)

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Albouy, G.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Aldrich, M.

M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid-state lighting using a sensor network,” Proc. SPIE 7784, 105–114 (2010).

Badia, P.

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

Balteau, E.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Berson, D. M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Boecker, M.

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

Buijs, R. M.

F. A. J. L. Scheer, L. J. P. van Doornen, and R. M. Buijs, “Light and diurnal cycle affect human heart rate: possible role for the circadian pacemaker,” J. Biol. Rhythms 14(3), 202–212 (1999).
[Crossref] [PubMed]

Caicedo, D.

D. Caicedo, A. Pandharipande, and F. M. J. Willems, “Daylight adaptive lighting control using light sensor calibration prior information,” Energy Build. 73, 105–114 (2014).
[Crossref]

Cajochen, C.

C. Cajochen, “Alerting effects of light,” Sleep Med. Rev. 11(6), 453–464 (2007).
[Crossref] [PubMed]

Carreras, J.

Chuntamara, C.

S. Veeramas and C. Chuntamara, “The evaluation of lighting energy saving in open-plan office building with Daylight-linked system in Bangkok: an experimental study,” in 2nd Chulalongkorn University Architectural Design Symposium (CU:ADS, 2011), pp. 1-19

Culpepper, J.

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

Dang-Vu, T. T.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Darsaud, A.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Degueldre, C.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Desseilles, M.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Dijk, D. J.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Dunn, F. A.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

Goodwin, F. K.

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Guler, O.

C. Yavuz, E. Yanikoglu, and O. Guler, “Determination of real energy saving potential of daylight responsive systems: a case study from Turkey,” Light Eng. 18(2), 99–105 (2010).

Harsh, J. R.

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

Hertog, W.

Hunt, C. E.

Lewy, A. J.

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Llenas, A.

Luxen, A.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Maquet, P.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Markey, S. P.

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Moreau, V.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Myers, B.

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

Newsome, D. A.

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Pandharipande, A.

D. Caicedo, A. Pandharipande, and F. M. J. Willems, “Daylight adaptive lighting control using light sensor calibration prior information,” Energy Build. 73, 105–114 (2014).
[Crossref]

Paradiso, J.

M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid-state lighting using a sensor network,” Proc. SPIE 7784, 105–114 (2010).

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Peigneux, P.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Phillips, C.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Quintero, J. M.

Scheer, F. A. J. L.

F. A. J. L. Scheer, L. J. P. van Doornen, and R. M. Buijs, “Light and diurnal cycle affect human heart rate: possible role for the circadian pacemaker,” J. Biol. Rhythms 14(3), 202–212 (1999).
[Crossref] [PubMed]

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

Sterpenich, V.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Sudrià, A.

Takao, M.

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

van Doornen, L. J. P.

F. A. J. L. Scheer, L. J. P. van Doornen, and R. M. Buijs, “Light and diurnal cycle affect human heart rate: possible role for the circadian pacemaker,” J. Biol. Rhythms 14(3), 202–212 (1999).
[Crossref] [PubMed]

Vandewalle, G.

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Veeramas, S.

S. Veeramas and C. Chuntamara, “The evaluation of lighting energy saving in open-plan office building with Daylight-linked system in Bangkok: an experimental study,” in 2nd Chulalongkorn University Architectural Design Symposium (CU:ADS, 2011), pp. 1-19

Wehr, T. A.

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Willems, F. M. J.

D. Caicedo, A. Pandharipande, and F. M. J. Willems, “Daylight adaptive lighting control using light sensor calibration prior information,” Energy Build. 73, 105–114 (2014).
[Crossref]

Yanikoglu, E.

C. Yavuz, E. Yanikoglu, and O. Guler, “Determination of real energy saving potential of daylight responsive systems: a case study from Turkey,” Light Eng. 18(2), 99–105 (2010).

Yavuz, C.

C. Yavuz, E. Yanikoglu, and O. Guler, “Determination of real energy saving potential of daylight responsive systems: a case study from Turkey,” Light Eng. 18(2), 99–105 (2010).

Zhao, N.

M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid-state lighting using a sensor network,” Proc. SPIE 7784, 105–114 (2010).

Curr. Biol. (1)

G. Vandewalle, E. Balteau, C. Phillips, C. Degueldre, V. Moreau, V. Sterpenich, G. Albouy, A. Darsaud, M. Desseilles, T. T. Dang-Vu, P. Peigneux, A. Luxen, D. J. Dijk, and P. Maquet, “Daytime light exposure dynamically enhances brain responses,” Curr. Biol. 16(16), 1616–1621 (2006).
[Crossref] [PubMed]

Energy Build. (1)

D. Caicedo, A. Pandharipande, and F. M. J. Willems, “Daylight adaptive lighting control using light sensor calibration prior information,” Energy Build. 73, 105–114 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8(2), 333–338 (2002).
[Crossref]

J. Biol. Rhythms (1)

F. A. J. L. Scheer, L. J. P. van Doornen, and R. M. Buijs, “Light and diurnal cycle affect human heart rate: possible role for the circadian pacemaker,” J. Biol. Rhythms 14(3), 202–212 (1999).
[Crossref] [PubMed]

Light Eng. (1)

C. Yavuz, E. Yanikoglu, and O. Guler, “Determination of real energy saving potential of daylight responsive systems: a case study from Turkey,” Light Eng. 18(2), 99–105 (2010).

Opt. Express (2)

Physiol. Behav. (1)

P. Badia, B. Myers, M. Boecker, J. Culpepper, and J. R. Harsh, “Bright light effects on body temperature, alertness, EEG and behavior,” Physiol. Behav. 50(3), 583–588 (1991).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid-state lighting using a sensor network,” Proc. SPIE 7784, 105–114 (2010).

Science (2)

D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295(5557), 1070–1073 (2002).
[Crossref] [PubMed]

A. J. Lewy, T. A. Wehr, F. K. Goodwin, D. A. Newsome, and S. P. Markey, “Light suppresses melatonin secretion in humans,” Science 210(4475), 1267–1269 (1980).
[Crossref] [PubMed]

Sleep Med. Rev. (1)

C. Cajochen, “Alerting effects of light,” Sleep Med. Rev. 11(6), 453–464 (2007).
[Crossref] [PubMed]

Other (7)

C. M. Gropp, “Regulation of melanopsin and PACAP mRNA by light, circadian and sleep homeostatic processes,” Medizinischen Fakultät Charité – Universitätsmedizin Berlin, PhD dissertation (2014)

Global Efficient Lighting Forum, “Policy options to accelerate the global transition to advanced lighting”, http://www.enlighten-initiative.org/Portals/0/documents/global-forum/Green_Paper_FINAL%20reduced.pdf (2014)

S. Veeramas and C. Chuntamara, “The evaluation of lighting energy saving in open-plan office building with Daylight-linked system in Bangkok: an experimental study,” in 2nd Chulalongkorn University Architectural Design Symposium (CU:ADS, 2011), pp. 1-19

W. Pierpoint, “Equi-visibility lighting control system”, United States Patent 4,273,999 (1981)

Commission Internationale de l’Eclairage (CIE), “Method of specifying and measuring color rendering properties of light sources,” CIE Publication 13.3 (1995).

B. Tralau and C. Schierz, “The preference of colour temperature depending on daylight and weather,” in CIE Proceedings Lighting Quality and Energy Efficiency (CIE, 2014), paper x039.

The Munsell book of color X-Rite glossy collection (X-Rite Europe GmbH, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental setup. (a) Schematic diagram showing skylight, spectrophotometer, spectrally tunable LED luminaires and their respective datalinks. (b) Test room.
Fig. 2
Fig. 2 Normalized emission spectra of the individual LED channels of the spectrally tunable luminaires.
Fig. 3
Fig. 3 Daylight compensation at a CCT of 4,000 K comparing daylight entering the test room, the compensation spectrum emitted by the luminaires and the summed illumination spectrum optimized for color quality (a) and efficacy (b).
Fig. 4
Fig. 4 Luminaire spectrum, optimized for color quality and efficacy, at a CCT of 4,000 K.
Fig. 5
Fig. 5 CRMs showing the difference in color fidelity between the two optimization modi: efficacy (a) and color quality (b). Note that the optimization for efficacy results in color fidelity deficiencies, especially for yellow-green and red colored objects. The color fidelity optimization results in excellent color fidelity across the Munsell color gamut.
Fig. 6
Fig. 6 Illuminance and correlated color temperature variations in the test room over the course of one day. (a) And (c) show the results for color quality optimization, (b) and (d) show efficacy optimizations.
Fig. 7
Fig. 7 Power consumption (a) and general color rendering index (b) of the luminaires during the experiment. Blue lines represent the results from the efficacy optimization while red lines show the results of the color quality algorithm.
Fig. 8
Fig. 8 Measured daylight spectrum (blue), copied luminaire spectrum (orange) and resulting illumination spectrum in the room (green) recorded at 9:21 a.m.
Fig. 9
Fig. 9 Lighting conditions at the workplane and power consumption of the system over the course of a day. (a) Natural daylight illuminance values, (b) total illuminance inside the test room, (c) correlated color temperature, (d) general color rendering index, (e) power consumption of one luminaire and (f) power consumption of one luminaire during 6 consecutive days. Note the increase in power consumption during cloudy periods (day 2).
Fig. 10
Fig. 10 Photographs illustrating the test room under different illumination spectra used during the experiments

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

min 1 2 | | S j S j t | | 2 = min 1 2 | | i = 1 12 A i L i j S j t | | 2 , j [ 1 , 401 ]
min 1 2 | | i = 1 12 A i L i j S j t | | 2
i = 1 12 A i C i k = C k t , k [ 1 , 3 ]
C k = 380 780 S ( λ ) M k ( λ ) d λ , k [ 1 , 3 ]

Metrics