Abstract

We report a methane sensor based on an integrated Mach-Zehnder interferometer, which is cladded by a styrene-acrylonitrile film incorporating cryptophane-A. Cryptophane-A is a supramolecular compound able to selectively trap methane, and its presence in the cladding leads to a 17-fold sensitivity enhancement. Our approach, based on 3 cm-long low-loss Si3N4 rib waveguides, results in a detection limit as low as 17 ppm. This is 1–2 orders of magnitude lower than typically achieved with chip-scale low-cost sensors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection

Jianchun Yang, Chuanyi Tao, Xueming Li, Guangqin Zhu, and Weimin Chen
Opt. Express 19(15) 14696-14706 (2011)

On-chip silicon Mach–Zehnder interferometer sensor for ultrasound detection

Boling Ouyang, Yanlu Li, Marten Kruidhof, Roland Horsten, Koen W. A. van Dongen, and Jacob Caro
Opt. Lett. 44(8) 1928-1931 (2019)

Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers

Biswajeet Guha, Alexander Gondarenko, and Michal Lipson
Opt. Express 18(3) 1879-1887 (2010)

References

  • View by:
  • |
  • |
  • |

  1. IPCC Fifth Assessment Report (WGI AR5), Climate Change 2013: The Physical Science Basis, Summary for Policymakers (Cambridge University, 2013).
  2. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2013).
    [Crossref]
  3. J. Shemshada, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171–172, 77–92 (2012).
    [Crossref]
  4. N. S. Lawrence, “Analytical detection methodologies for methane and related hydrocarbons,” Talanta 69, 385–392 (2006).
    [Crossref]
  5. T. Brotin and J.-P. Dutasta, “Cryptophanes and Their Complexes–Present and Future,” Chem. Rev. 109, 88–130 (2009).
    [Crossref]
  6. L. Garel, J.-P. Dutasta, and A. Collet, “Complexation of Methane and Chlorofluorocarbons by Cryptophane–A in Organic Solution,” Angew. Chem. Int. Ed. Engl. 32, 1169–1171, (1993).
    [Crossref]
  7. E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
    [Crossref]
  8. K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
    [Crossref] [PubMed]
  9. M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
    [Crossref]
  10. J. Yang, Ch. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19, 14696–14706 (2011).
    [Crossref] [PubMed]
  11. J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
    [Crossref]
  12. C. Boulart, M. C. Mowlem, D. P. Connelly, J.-P. Dutasta, and Ch. R. German, “A novel, low-cost, high performance dissolved methane sensor for aqueous environments,” Opt. Express 16, 12607–12617 (2008).
    [Crossref] [PubMed]
  13. C. Wagner C., J. Frankenberger, and Peter P. Deimel., “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode,” IEEE Photon. Tech. Lett. 5, 1257–1259 (1993).
    [Crossref]
  14. N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. Actuators B Chem. 7, 672–676, (1992).
    [Crossref]
  15. A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
    [Crossref]
  16. A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
    [Crossref]
  17. P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
    [Crossref] [PubMed]
  18. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
    [Crossref]
  19. S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
    [Crossref]
  20. F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
    [Crossref]
  21. J. Canceill and A. Collet, “Two-step synthesis of D 3 and C 3h cryptophanes,” J. Chem. Soc., Chem. Commun. 9, 582–584 (1988).
    [Crossref]
  22. N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
    [Crossref]
  23. D. MacDougall and W. B. Crummett, “Guidelines for data acquisition and data quality evaluation in environmental chemistry,” Anal. Chem. 52, 2242–2249 (1980).
    [Crossref]
  24. H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
    [Crossref]
  25. D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
    [Crossref] [PubMed]
  26. Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
    [Crossref] [PubMed]

2015 (3)

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
[Crossref]

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

2014 (2)

Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
[Crossref] [PubMed]

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

2013 (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2013).
[Crossref]

2012 (4)

J. Shemshada, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171–172, 77–92 (2012).
[Crossref]

A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
[Crossref]

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

2011 (2)

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

J. Yang, Ch. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19, 14696–14706 (2011).
[Crossref] [PubMed]

2009 (2)

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

T. Brotin and J.-P. Dutasta, “Cryptophanes and Their Complexes–Present and Future,” Chem. Rev. 109, 88–130 (2009).
[Crossref]

2008 (2)

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

C. Boulart, M. C. Mowlem, D. P. Connelly, J.-P. Dutasta, and Ch. R. German, “A novel, low-cost, high performance dissolved methane sensor for aqueous environments,” Opt. Express 16, 12607–12617 (2008).
[Crossref] [PubMed]

2006 (1)

N. S. Lawrence, “Analytical detection methodologies for methane and related hydrocarbons,” Talanta 69, 385–392 (2006).
[Crossref]

2005 (1)

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

2003 (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

1996 (1)

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

1993 (2)

L. Garel, J.-P. Dutasta, and A. Collet, “Complexation of Methane and Chlorofluorocarbons by Cryptophane–A in Organic Solution,” Angew. Chem. Int. Ed. Engl. 32, 1169–1171, (1993).
[Crossref]

C. Wagner C., J. Frankenberger, and Peter P. Deimel., “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode,” IEEE Photon. Tech. Lett. 5, 1257–1259 (1993).
[Crossref]

1992 (1)

N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. Actuators B Chem. 7, 672–676, (1992).
[Crossref]

1988 (1)

J. Canceill and A. Collet, “Two-step synthesis of D 3 and C 3h cryptophanes,” J. Chem. Soc., Chem. Commun. 9, 582–584 (1988).
[Crossref]

1980 (1)

D. MacDougall and W. B. Crummett, “Guidelines for data acquisition and data quality evaluation in environmental chemistry,” Anal. Chem. 52, 2242–2249 (1980).
[Crossref]

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Abdelghani, A.

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

Ahluwalia, B. S.

S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
[Crossref]

Aissaoui, N.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

Aminossadati, S. M.

J. Shemshada, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171–172, 77–92 (2012).
[Crossref]

Bai, Y.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Benounis, M.

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

Bergaoui, L.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

Bier, F. F.

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

Boujday, S.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

Boulart, C.

Brotin, T.

Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
[Crossref] [PubMed]

T. Brotin and J.-P. Dutasta, “Cryptophanes and Their Complexes–Present and Future,” Chem. Rev. 109, 88–130 (2009).
[Crossref]

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Canceill, J.

J. Canceill and A. Collet, “Two-step synthesis of D 3 and C 3h cryptophanes,” J. Chem. Soc., Chem. Commun. 9, 582–584 (1988).
[Crossref]

Chaffee, K. E.

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

Chauvet, J.P.

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

Cheben, P.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Chen, W.

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

J. Yang, Ch. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19, 14696–14706 (2011).
[Crossref] [PubMed]

Cherif, K.

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

Coll, R.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Collet, A.

L. Garel, J.-P. Dutasta, and A. Collet, “Complexation of Methane and Chlorofluorocarbons by Cryptophane–A in Organic Solution,” Angew. Chem. Int. Ed. Engl. 32, 1169–1171, (1993).
[Crossref]

J. Canceill and A. Collet, “Two-step synthesis of D 3 and C 3h cryptophanes,” J. Chem. Soc., Chem. Commun. 9, 582–584 (1988).
[Crossref]

Connelly, D. P.

Crummett, W. B.

D. MacDougall and W. B. Crummett, “Guidelines for data acquisition and data quality evaluation in environmental chemistry,” Anal. Chem. 52, 2242–2249 (1980).
[Crossref]

Deimel., Peter P.

C. Wagner C., J. Frankenberger, and Peter P. Deimel., “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode,” IEEE Photon. Tech. Lett. 5, 1257–1259 (1993).
[Crossref]

Delâge, A.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Densmore, A.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Dmochowskia, I. J.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Dominguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Dullo, F. T.

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

Dutasta, J.-P.

T. Brotin and J.-P. Dutasta, “Cryptophanes and Their Complexes–Present and Future,” Chem. Rev. 109, 88–130 (2009).
[Crossref]

C. Boulart, M. C. Mowlem, D. P. Connelly, J.-P. Dutasta, and Ch. R. German, “A novel, low-cost, high performance dissolved methane sensor for aqueous environments,” Opt. Express 16, 12607–12617 (2008).
[Crossref] [PubMed]

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

L. Garel, J.-P. Dutasta, and A. Collet, “Complexation of Methane and Chlorofluorocarbons by Cryptophane–A in Organic Solution,” Angew. Chem. Int. Ed. Engl. 32, 1169–1171, (1993).
[Crossref]

Dutasta., J.-P.

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

Ehrentreich-Frster, E.

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

Fabricius, N.

N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. Actuators B Chem. 7, 672–676, (1992).
[Crossref]

Fitzgerald, R.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Fogarty, H. A.

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

Frankenberger, J.

C. Wagner C., J. Frankenberger, and Peter P. Deimel., “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode,” IEEE Photon. Tech. Lett. 5, 1257–1259 (1993).
[Crossref]

Garel, L.

L. Garel, J.-P. Dutasta, and A. Collet, “Complexation of Methane and Chlorofluorocarbons by Cryptophane–A in Organic Solution,” Angew. Chem. Int. Ed. Engl. 32, 1169–1171, (1993).
[Crossref]

Gauglitz, G.

N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. Actuators B Chem. 7, 672–676, (1992).
[Crossref]

German, Ch. R.

Goodson, B. M.

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

Hellesø, O. G.

S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
[Crossref]

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

Hernandez, L. F.

A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2013).
[Crossref]

Huang, J.

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

Ingenhoff, J.

N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. Actuators B Chem. 7, 672–676, (1992).
[Crossref]

Jacobson, D. R.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Jaffrezic-Renault, N.

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

Janz, S.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Kehl, F.

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

Khan, N. S.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Kizil, M. S.

J. Shemshada, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171–172, 77–92 (2012).
[Crossref]

Kowalewski, J.

Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
[Crossref] [PubMed]

Kozma, P.

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

Lambert, J.-F.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

Landoulsi, J.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

Lapointe, J.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Laureano-Prez, L.

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Lawrence, N. S.

N. S. Lawrence, “Analytical detection methodologies for methane and related hydrocarbons,” Talanta 69, 385–392 (2006).
[Crossref]

Li, X.

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

J. Yang, Ch. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19, 14696–14706 (2011).
[Crossref] [PubMed]

Lindecrantz, S.

S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
[Crossref]

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Loock, H.-P.

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

Lopinski, G.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

MacDougall, D.

D. MacDougall and W. B. Crummett, “Guidelines for data acquisition and data quality evaluation in environmental chemistry,” Anal. Chem. 52, 2242–2249 (1980).
[Crossref]

Martin, J.R.

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

Mischki, T.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Morimoto, N. I.

A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
[Crossref]

Mowlem, M. C.

Nicolas, D.

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

Perez, H.

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Schmid, J. H.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Shemshada, J.

J. Shemshada, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171–172, 77–92 (2012).
[Crossref]

Siarkowski, A. L.

A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
[Crossref]

Solbø, S. A.

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

Souteyrand, E.

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

Stamm, Ch.

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

Steiner, E.

Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
[Crossref] [PubMed]

Takacs, Z.

Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
[Crossref] [PubMed]

Tao, Ch.

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

J. Yang, Ch. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19, 14696–14706 (2011).
[Crossref] [PubMed]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2013).
[Crossref]

Tinguely, J.-C.

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
[Crossref]

Viana Borges, B.-H.

A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
[Crossref]

Wagner C., C.

C. Wagner C., J. Frankenberger, and Peter P. Deimel., “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode,” IEEE Photon. Tech. Lett. 5, 1257–1259 (1993).
[Crossref]

Waldron, P.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Wentzell, P. D.

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

Xu, D. X.

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Yang, J.

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

J. Yang, Ch. Tao, X. Li, G. Zhu, and W. Chen, “Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection,” Opt. Express 19, 14696–14706 (2011).
[Crossref] [PubMed]

Zhou, L.

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

Zhu, G.

Adv. Opt. Technol. (1)

A. Densmore, D. X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J. H. Schmid, and P. Cheben, “Sensitive label-free biomolecular detection using thin silicon waveguides,” Adv. Opt. Technol. 2008, 725967 (2008).
[Crossref]

Anal. Chem. (1)

D. MacDougall and W. B. Crummett, “Guidelines for data acquisition and data quality evaluation in environmental chemistry,” Anal. Chem. 52, 2242–2249 (1980).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

L. Garel, J.-P. Dutasta, and A. Collet, “Complexation of Methane and Chlorofluorocarbons by Cryptophane–A in Organic Solution,” Angew. Chem. Int. Ed. Engl. 32, 1169–1171, (1993).
[Crossref]

Biosens. Bioelectron. (1)

P. Kozma, F. Kehl, E. Ehrentreich-Frster, Ch. Stamm, and F. F. Bier, “Integrated planar optical waveguide interferometer biosensors: A comparative review,” Biosens. Bioelectron. 58, 287–307, (2014).
[Crossref] [PubMed]

Chem. Rev. (1)

T. Brotin and J.-P. Dutasta, “Cryptophanes and Their Complexes–Present and Future,” Chem. Rev. 109, 88–130 (2009).
[Crossref]

IEEE Photon. J. (1)

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

IEEE Photon. Tech. Lett. (1)

C. Wagner C., J. Frankenberger, and Peter P. Deimel., “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode,” IEEE Photon. Tech. Lett. 5, 1257–1259 (1993).
[Crossref]

J. Chem. Soc., Chem. Commun. (1)

J. Canceill and A. Collet, “Two-step synthesis of D 3 and C 3h cryptophanes,” J. Chem. Soc., Chem. Commun. 9, 582–584 (1988).
[Crossref]

J. Eur. Opt. Soc, Rapid Publ. (1)

S. Lindecrantz, J.-C. Tinguely, B. S. Ahluwalia, and O. G. Hellesø, “Characterization of a waveguide Mach-Zehnder interferometer using PDMS as a cover layer,” J. Eur. Opt. Soc, Rapid Publ. 10, 1990–2573 (2015).
[Crossref]

J. Phys. Chem. A (1)

K. E. Chaffee, H. A. Fogarty, T. Brotin, B. M. Goodson, and J.-P. Dutasta., “Encapsulation of small gas molecules by cryptophane–111 in organic solution. 1. Size-and shape-selective complexation of simple hydrocarbons,” J. Phys. Chem. A 113, 13675–13684 (2009).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

Z. Takacs, E. Steiner, J. Kowalewski, and T. Brotin, “NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups,” J. Phys. Chem. B 118, 2134–2146 (2014).
[Crossref] [PubMed]

Langmuir (1)

N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert, and S. Boujday, “Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption,” Langmuir 28, 656–665 (2012).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2013).
[Crossref]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, and A. Montoya, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[Crossref]

Opt. Eng. (1)

A. L. Siarkowski, L. F. Hernandez, B.-H. Viana Borges, and N. I. Morimoto, “Sensing based on Mach-Zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection,” Opt. Eng. 51, 054401 (2012).
[Crossref]

Opt. Express (2)

Proc Natl. Acad. Sci. U.S.A. (1)

D. R. Jacobson, N. S. Khan, R. Coll, R. Fitzgerald, L. Laureano-Prez, Y. Bai, and I. J. Dmochowskia, “Measurement of radon and xenon binding to a cryptophane molecular host,” Proc Natl. Acad. Sci. U.S.A. 108, 10969–10973 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (6)

H.-P. Loock and P. D. Wentzell, “Detection limits of chemical sensors: Applications and misapplications,” Sens. Actuators B Chem. 173, 157–163 (2012).
[Crossref]

J. Yang, L. Zhou, J. Huang, Ch. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sens. Actuators B Chem. 207, 477–480 (2015)
[Crossref]

N. Fabricius, G. Gauglitz, and J. Ingenhoff, “A gas sensor based on an integrated optical Mach-Zehnder interferometer,” Sens. Actuators B Chem. 7, 672–676, (1992).
[Crossref]

J. Shemshada, S. M. Aminossadati, and M. S. Kizil, “A review of developments in near infrared methane detection based on tunable diode laser,” Sens. Actuators B Chem. 171–172, 77–92 (2012).
[Crossref]

M. Benounis, N. Jaffrezic-Renault, J.-P. Dutasta, K. Cherif, and A. Abdelghani, “Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules,” Sens. Actuators B Chem. 107, 32–39 (2005).
[Crossref]

E. Souteyrand, D. Nicolas, J.R. Martin, J.P. Chauvet, and H. Perez, “Behaviour of cryptophane molecules in gas media,” Sens. Actuators B Chem. 33, 182–187 (1996).
[Crossref]

Talanta (1)

N. S. Lawrence, “Analytical detection methodologies for methane and related hydrocarbons,” Talanta 69, 385–392 (2006).
[Crossref]

Other (1)

IPCC Fifth Assessment Report (WGI AR5), Climate Change 2013: The Physical Science Basis, Summary for Policymakers (Cambridge University, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 3D layout of the Mach-Zehnder interferometer, showing both the reference and the sensing arm cross-sections. The 25 μm-wide window opened above the sensing arm is filled with a cryptophane-A-doped, methane permeable polymer (SAN). This allows the methane molecules to diffuse to the waveguide surface. The waveguide dimensions and the layer thicknesses are given in micrometers.
Fig. 2
Fig. 2 The Si3N4 rib waveguide. (a) Numerically simulated mode field distribution of the fundamental TM mode over the waveguide cross-section; 47% of the optical field extends into the top polymer cladding. (b) AFM image of the waveguide surface; note the difference in the scaling of the lateral and the vertical axes.
Fig. 3
Fig. 3 Schematic diagram of (a) the optical setup and (b) the gas flow system. The top photograph shows the 25 mm × 40 mm sensor chip enclosed in a microfluidic chamber and mounted on a thermo-electrically stabilised stage.
Fig. 4
Fig. 4 Varying input methane concentration (a) and the resulting optical transmission change using sensor A (b). The corresponding phase change calculated using Eq. (2) before (c) and after unwrapping (d). The temporal offset of 100 s between the change in methane concentration and the phase response, as well as the 10% to 90% rise time of 40 s, are primarily related to the gas transport from the MFCs to the microfluidic chip. The spikes visible in the data are due to a shock wave generated upon switching between the respective MFCs.
Fig. 5
Fig. 5 (a) Recorded phase change ΔϕS for sensor A and 4 different methane concentrations. (b) Phase change versus methane concentration for sensors A (red) and B (blue).
Fig. 6
Fig. 6 Comparison of the phase response to 2% methane from sensors with and without cryptophane-A, showing a 17-fold sensitivity enhancement due to cryptophane.

Tables (1)

Tables Icon

Table 1 Sensitivity and limit of detection for the measured sensors.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I T = I S + I R + 2 I S I R cos ( Δ ϕ S + Δ ϕ 0 )
Δ ϕ S ( t ) = Δ ϕ 0 + arccos I T ( t ) I S I R 2 I S I R
S = Δ ϕ S c
LOD = 2.821 σ y S ,

Metrics