Abstract

We present a non-mechanical microiris based on two complementary electrochromic (EC) materials, namely viologens and phenozines, with an almost neutral spectral behavior. Measurements concerning the spectral light transmission, modulation transfer function, and response time validate that the optical performance of the EC-iris is comparable to that of a classical blade iris. The time constant is limited due to diffusive mass transport of the molecules, but can be reduced by a short voltage pulse. The current controlled transmission of the EC-material renders the individual control of each iris segment without crosstalk possible, allowing its usage as tunable spatial filter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical constants of electrochromic films and contrast ratio of reflective electrochromic devices

Cheng-Chung Jaing, Chien-Jen Tang, Chih-Chao Chan, Kun-Hsien Lee, Chien-Cheng Kuo, Hsi-Chao Chen, and Cheng-Chung Lee
Appl. Opt. 53(4) A154-A158 (2014)

High transmittance and deep RGB primary electrochromic color filter for high light out-coupling electro-optical devices

Jin Hwan Park, Ik Jang Ko, Gyeong Woo Kim, Hyuna Lee, Seung Hye Jeong, Ju Young Lee, Raju Lampande, and Jang Hyuk Kwon
Opt. Express 27(18) 25531-25543 (2019)

Optimized ion diffusion depth for maximizing optical contrast of environmentally friendly PEDOT:PSS electrochromic devices

Joo Yeon Kim, Ji-Young Oh, Sanghoon Cheon, Hyunkoo Lee, Jonghee Lee, Jeong-Ik Lee, Hojun Ryu, Seong M. Cho, Tae-Youb Kim, Chil-Sung Ah, Yong-Hae Kim, and Chi-Sun Hwang
Opt. Mater. Express 6(10) 3127-3134 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
    [Crossref] [PubMed]
  2. H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
    [Crossref]
  3. P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
    [Crossref]
  4. C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
    [Crossref]
  5. A. Kraft and M. Rottmann, “Properties, performance and current status of the laminated electrochromic glass of gesimat,” Sol. Energ. Mat. Sol. Cells 93(12), 2088–2092 (2009).
    [Crossref]
  6. Gentex Corporation, www.gentex.com .
  7. T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
    [Crossref]
  8. T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
    [Crossref]
  9. J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
    [Crossref]
  10. H.S. Carslaw and I. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).
  11. D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

2012 (2)

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

2011 (1)

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
[Crossref]

2009 (1)

A. Kraft and M. Rottmann, “Properties, performance and current status of the laminated electrochromic glass of gesimat,” Sol. Energ. Mat. Sol. Cells 93(12), 2088–2092 (2009).
[Crossref]

2008 (1)

J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
[Crossref]

2000 (1)

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Carslaw, H.S.

H.S. Carslaw and I. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

Chau, F.S.

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

Choy, J.H.

J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
[Crossref]

Deutschmann, T.

D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
[Crossref] [PubMed]

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

Doering, C.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
[Crossref]

Du, Y.

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

Fouckhardt, H.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
[Crossref]

Glukhovsky, A.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Hwang, S.J.

J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
[Crossref]

Iddan, G.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Jaeger, I.

H.S. Carslaw and I. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

Kang, J.H.

J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
[Crossref]

Kimmle, C.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
[Crossref]

Kraft, A.

A. Kraft and M. Rottmann, “Properties, performance and current status of the laminated electrochromic glass of gesimat,” Sol. Energ. Mat. Sol. Cells 93(12), 2088–2092 (2009).
[Crossref]

Meron, G.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Mu, X.

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

Müller, P.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

Oesterschulze, E.

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

D. Pätz, T. Deutschmann, E. Oesterschulze, and S. Sinzinger, “Depth of focus analysis of optical systems using tunable aperture stops with a moderate level of absorption,” Appl. Opt. 53(28), 6508–6512 (2014).
[Crossref] [PubMed]

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

Paek, S.M.

J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
[Crossref]

Pätz, D.

Rottmann, M.

A. Kraft and M. Rottmann, “Properties, performance and current status of the laminated electrochromic glass of gesimat,” Sol. Energ. Mat. Sol. Cells 93(12), 2088–2092 (2009).
[Crossref]

Schmittat, U.

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
[Crossref]

Sinzinger, S.

Swain, P.

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Yu, H.

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

Zappe, H.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

Zhou, G.

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

Appl. Opt. (1)

Electrochem. Commun. (1)

J.H. Kang, S.M. Paek, S.J. Hwang, and J.H. Choy, “Optical iris application of electrochromic thin films,” Electrochem. Commun. 10(11), 1785–1787 (2008).
[Crossref]

J. Microelectromech. Syst. (2)

H. Yu, G. Zhou, Y. Du, X. Mu, and F.S. Chau, “Mems-based tunable iris diaphragm,” J. Microelectromech. Syst. 21(5),1136–1145 (2012).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

J. Micromech. Microeng. (1)

T. Deutschmann and E. Oesterschulze, “Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene),” J. Micromech. Microeng. 23(6), 065032 (2013).
[Crossref]

J. Opt. (1)

T. Deutschmann and E. Oesterschulze, “Integrated electrochromic iris device for low power and space-limited applications,” J. Opt. 16(7), 075301 (2014).
[Crossref]

Microelec. Eng. (1)

C. Kimmle, U. Schmittat, C. Doering, and H. Fouckhardt, “Compact dynamic microfluidic iris for active optics,” Microelec. Eng. 88(8), 1772–1774 (2011).
[Crossref]

Nature (1)

G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature 405(6785), 417 (2000).
[Crossref] [PubMed]

Sol. Energ. Mat. Sol. Cells (1)

A. Kraft and M. Rottmann, “Properties, performance and current status of the laminated electrochromic glass of gesimat,” Sol. Energ. Mat. Sol. Cells 93(12), 2088–2092 (2009).
[Crossref]

Other (2)

Gentex Corporation, www.gentex.com .

H.S. Carslaw and I. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Working principle of the EC-cell based on the two complementary EC-molecules phenazine (Pz) and viologene (Vio). a) The spatially separated redox reactions at the individual electrodes with the involved charge transfer. b) and c) redox states and corresponding colors of phenazine and viologene, respectively.
Fig. 2
Fig. 2 a) Exploded view of the EC-iris device. b) Optical images of all possible switching states of a two-level iris (electrolyte thickness 275 μm).
Fig. 3
Fig. 3 Transmission spectra of an unstructured EC cell: a) transparent (j=0 mA) and saturated opaque state (j=1.2 mA) for a sample with a 275 μm electrolyte layer. b) Transmission obtained integrating the spectral data in the wavelength range from 400 to 750 nm for various control currents. The sample used had an electrolyte layer thickness of 165 μm.
Fig. 4
Fig. 4 a) Time dependence of the transmission of four EC devices with different electrolyte layer thickness, when a voltage of 1 V is applied. b) Transients of the transmission through an EC-iris. After the outer iris ring is colored by an applied voltage of 1 V for 120 s, bleaching is supported by a 1 V counter-pulse with different pulse duration.
Fig. 5
Fig. 5 Comparison of MTF measurements for different aperture diameters (3, 6, 10 mm) of a classical and an EC-iris.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C vio ( x , t ) = 4 C vio 0 π m = 0 1 2 m + 1 exp ( D ( 2 m + 1 ) 2 π 2 t d 2 ) sin ( ( 2 m + 1 ) π ( x + d ) 2 d ˜ ) .

Metrics