Abstract

A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber

Zhi-Li Li, Wen-Yuan Zhou, Ming-Ming Luo, Yan-Ge Liu, and Jian-Guo Tian
Opt. Express 23(8) 10413-10420 (2015)

An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating

Maria Konstantaki, Argyro Klini, Demetrios Anglos, and Stavros Pissadakis
Opt. Express 20(8) 8472-8484 (2012)

Optofluidic in-fiber interferometer based on hollow optical fiber with two cores

Tingting Yuan, Xinghua Yang, Zhihai Liu, Jun Yang, Song Li, Depeng Kong, Xiuxiu Qi, Wenting Yu, Qunlong Long, and Libo Yuan
Opt. Express 25(15) 18205-18215 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  2. C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82(9), 1338–1340 (2003).
    [Crossref]
  3. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36(13), 2548–2550 (2011).
    [Crossref] [PubMed]
  4. S. H. Dong, S. L. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers,” Appl. Phys. Lett. 103(11), 11907 (2013).
    [Crossref]
  5. J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows,” Lab Chip 13(14), 2721–2726 (2013).
    [Crossref] [PubMed]
  6. X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
    [Crossref] [PubMed]
  7. R. M. Gerosa, A. Sudirman, L. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2(2), 186–193 (2015).
    [Crossref]
  8. G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
    [Crossref]
  9. J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
    [Crossref] [PubMed]
  10. H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [Crossref] [PubMed]
  11. A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
    [Crossref] [PubMed]
  12. C.-Y. Chen, C.-M. Lee, and J.-S. Chang, “Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors,” Biochem. Eng. J. 32(1), 33–42 (2006).
    [Crossref]
  13. D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
    [Crossref]
  14. M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber Technology: a new avenew for optical nanosensors,” Photonic Sensors 2(4), 289–314 (2012).
    [Crossref]
  15. A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
    [Crossref]
  16. M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
    [Crossref]
  17. S. Pissadakis and S. Selleri, Optofluidics, Sensors and Actuators in Microstructured Optical Fibres (Woodhead Publishing, 2015).
  18. E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
    [Crossref]
  19. C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
    [Crossref]
  20. I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
    [Crossref]
  21. T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
    [Crossref]
  22. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1998).
  23. G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 5 (2014).
  24. W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).
  25. H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
    [Crossref]
  26. A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34(4), 191–259 (2010).
    [Crossref]
  27. B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
    [Crossref]
  28. Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
    [Crossref]
  29. I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69(24), 245401 (2004).
    [Crossref]
  30. P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
    [Crossref]
  31. S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” J. Photochem. Photobiol. C-Photochem. Rev. 8, 18–29 (2007).
  32. R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
    [Crossref]
  33. M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
    [Crossref]
  34. M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
    [Crossref]
  35. F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
    [Crossref]
  36. M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
    [Crossref] [PubMed]
  37. A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
    [Crossref]

2015 (3)

R. M. Gerosa, A. Sudirman, L. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2(2), 186–193 (2015).
[Crossref]

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

2014 (5)

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
[Crossref]

G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 5 (2014).

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

2013 (3)

S. H. Dong, S. L. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers,” Appl. Phys. Lett. 103(11), 11907 (2013).
[Crossref]

J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows,” Lab Chip 13(14), 2721–2726 (2013).
[Crossref] [PubMed]

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

2012 (3)

M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber Technology: a new avenew for optical nanosensors,” Photonic Sensors 2(4), 289–314 (2012).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34(4), 191–259 (2010).
[Crossref]

2009 (2)

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

2008 (2)

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

2007 (3)

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” J. Photochem. Photobiol. C-Photochem. Rev. 8, 18–29 (2007).

2006 (3)

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

C.-Y. Chen, C.-M. Lee, and J.-S. Chang, “Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors,” Biochem. Eng. J. 32(1), 33–42 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2004 (2)

I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69(24), 245401 (2004).
[Crossref]

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

2003 (1)

C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82(9), 1338–1340 (2003).
[Crossref]

2002 (1)

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

2001 (1)

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

2000 (1)

B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
[Crossref]

Abdallah, W.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Anastasiadis, S. H.

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

Androulidaki, M.

I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
[Crossref]

Anglos, D.

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[Crossref] [PubMed]

Athanassiou, A.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Baghdasaryan, T.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

Bano, N.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Barberoglou, M.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Beattie, J. K.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

Berghmans, F.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

Bersani, M.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Bertucci, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Bo, L.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Buckley, J. S.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Candiani, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36(13), 2548–2550 (2011).
[Crossref] [PubMed]

Canning, J.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

Caputo, G.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Carnegie, A.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Chang, J.-S.

C.-Y. Chen, C.-M. Lee, and J.-S. Chang, “Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors,” Biochem. Eng. J. 32(1), 33–42 (2006).
[Crossref]

Chen, C.-Y.

C.-Y. Chen, C.-M. Lee, and J.-S. Chang, “Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors,” Biochem. Eng. J. 32(1), 33–42 (2006).
[Crossref]

Chen, H. G.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Chen, H. R.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Chen, X. Y.

A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34(4), 191–259 (2010).
[Crossref]

Chiang, K. S.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Cingolani, R.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Consales, M.

M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber Technology: a new avenew for optical nanosensors,” Photonic Sensors 2(4), 289–314 (2012).
[Crossref]

Corradini, R.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Cortese, B.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Cozzoli, P. D.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Cucinotta, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows,” Lab Chip 13(14), 2721–2726 (2013).
[Crossref] [PubMed]

Cusano, A.

M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber Technology: a new avenew for optical nanosensors,” Photonic Sensors 2(4), 289–314 (2012).
[Crossref]

Das, R. N.

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

de Matos, C. J. S.

Djurišic, A. B.

A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34(4), 191–259 (2010).
[Crossref]

Dong, S. H.

S. H. Dong, S. L. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers,” Appl. Phys. Lett. 103(11), 11907 (2013).
[Crossref]

Edwards, J.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Eggleton, B. J.

C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82(9), 1338–1340 (2003).
[Crossref]

Erickson, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Feng, Y.

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

Fernandez, C. D.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Fink, Y.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Fordham, E.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Fotakis, C.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Fujishima, A.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

Geernaert, T.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

Gerosa, R. M.

Giannelis, E. P.

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

Giannetti, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Gibson, B. C.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

Gigli, G.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Graue, A.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Gumennik, A.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Habashy, T.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Hao, Z.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Hashimoto, K.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

Herold, B.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Hishita, S.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

Hou, C.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Hua, Z. L.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Huang, J.

S. H. Dong, S. L. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers,” Appl. Phys. Lett. 103(11), 11907 (2013).
[Crossref]

Hussain, H.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Hussain, I.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Ilagan, E.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

Im, S.

B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
[Crossref]

Jiang, L.

S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” J. Photochem. Photobiol. C-Photochem. Rev. 8, 18–29 (2007).

Jianquan, Y.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Jin, B. J.

B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
[Crossref]

Joannopoulos, J. D.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Kailiang, Z.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Ke, T.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Kerbage, C.

C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82(9), 1338–1340 (2003).
[Crossref]

Kieda, N.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

Klini, A.

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[Crossref] [PubMed]

Kong, D.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Konidakis, I.

I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
[Crossref]

Konstantaki, M.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[Crossref] [PubMed]

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36(13), 2548–2550 (2011).
[Crossref] [PubMed]

Lee, C.-M.

C.-Y. Chen, C.-M. Lee, and J.-S. Chang, “Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors,” Biochem. Eng. J. 32(1), 33–42 (2006).
[Crossref]

Lee, S. Y.

B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
[Crossref]

Lestoquoy, G.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Li, E.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Li, Y. S.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Liu, C.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Liu, K.-K.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Liu, Y. Q.

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

Manera, M. G.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Manicardi, A.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Manousaki, A.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Margulis, W.

Mattei, G.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Mazzoldi, P.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

McDaniel, W.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Mehra, R. M.

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

Menezes, L. S.

Mitsuhashi, T.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

Miyauchi, M.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

Montaron, B.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Nakajima, A.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

Narayanamurti, V.

I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69(24), 245401 (2004).
[Crossref]

Ng, A. M. C.

A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34(4), 191–259 (2010).
[Crossref]

Nobile, C.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Nur, O.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Okada, H.

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

Pagkozidis, A.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Papadopoulou, E. L.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Pellegrini, G.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Pisco, M.

M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber Technology: a new avenew for optical nanosensors,” Photonic Sensors 2(4), 289–314 (2012).
[Crossref]

Pissadakis, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
[Crossref]

M. Konstantaki, A. Klini, D. Anglos, and S. Pissadakis, “An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating,” Opt. Express 20(8), 8472–8484 (2012).
[Crossref] [PubMed]

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett. 36(13), 2548–2550 (2011).
[Crossref] [PubMed]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows,” Lab Chip 13(14), 2721–2726 (2013).
[Crossref] [PubMed]

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Pu, S. L.

S. H. Dong, S. L. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers,” Appl. Phys. Lett. 103(11), 11907 (2013).
[Crossref]

Qadir, M. I.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Rao, Y. J.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Rella, R.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Rose, A.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Sadaf, J. R.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Sagar, P.

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

Salerno, M.

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Schell, B. R.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Seleznev, N.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Selleri, S.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Shalish, I.

I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69(24), 245401 (2004).
[Crossref]

Shi, J. L.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Shishodia, P. K.

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

Signer, C.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Sinton, D.

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Song, Y. L.

S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” J. Photochem. Photobiol. C-Photochem. Rev. 8, 18–29 (2007).

Sorin, F.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Spoto, G.

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Sterner, C.

Stolyarov, A. M.

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Stratakis, E.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Sudirman, A.

Sun, R. D.

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

Temkin, H.

I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69(24), 245401 (2004).
[Crossref]

Teng, P.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Thienpont, H.

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

Tong, C.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Tsibidis, G. D.

G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 5 (2014).

Tzoumis, N.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

Vasanelli, L.

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows,” Lab Chip 13(14), 2721–2726 (2013).
[Crossref] [PubMed]

Wakahara, A.

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

Wang, S. T.

S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” J. Photochem. Photobiol. C-Photochem. Rev. 8, 18–29 (2007).

Watanabe, T.

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

Wei, L.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Willander, M.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Yan, D. S.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Yan, J. N.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, X.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Yang, Y.

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Ying, L.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Yinping, M.

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

Yoshida, A.

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

Yuan, L.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Yuan, T.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Zainelabdin, A.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Zaman, S.

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Zhang, G. B.

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

Zhang, H.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Zhang, X. Y.

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

Zhao, E.

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Zhou, Y. X.

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

Zhu, T.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Ziauddin, M.

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Zito, G.

I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
[Crossref]

Zorba, V.

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

Adv. Funct. Mater. (1)

G. Caputo, B. Cortese, C. Nobile, M. Salerno, R. Cingolani, G. Gigli, P. D. Cozzoli, and A. Athanassiou, “Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness,” Adv. Funct. Mater. 19(8), 1149–1157 (2009).
[Crossref]

Adv. Mater. (1)

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005 (2012).
[Crossref]

Appl. Phys. Lett. (3)

G. D. Tsibidis, “Thermal response of double-layered metal films after ultrashort pulsed laser irradiation: The role of nonthermal electron dynamics,” Appl. Phys. Lett. 104, 5 (2014).

S. H. Dong, S. L. Pu, and J. Huang, “Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers,” Appl. Phys. Lett. 103(11), 11907 (2013).
[Crossref]

C. Kerbage and B. J. Eggleton, “Tunable microfluidic optical fiber gratings,” Appl. Phys. Lett. 82(9), 1338–1340 (2003).
[Crossref]

Biochem. Eng. J. (1)

C.-Y. Chen, C.-M. Lee, and J.-S. Chang, “Hydrogen production by indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3–5 using optical fiber-illuminating photobioreactors,” Biochem. Eng. J. 32(1), 33–42 (2006).
[Crossref]

Biosens. Bioelectron. (1)

A. Bertucci, A. Manicardi, A. Candiani, S. Giannetti, A. Cucinotta, G. Spoto, M. Konstantaki, S. Pissadakis, S. Selleri, and R. Corradini, “Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system,” Biosens. Bioelectron. 63, 248–254 (2015).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on Au sputtered films,” Chem. Commun. (Camb.) 50(65), 9172–9175 (2014).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

M. Yinping, Z. Kailiang, L. Bo, L. Wei, Z. Hao, L. Ying, and Y. Jianquan, “Ferrofluid-infiltrated microstructured optical fiber long-period grating,” IEEE Photonics Technol. Lett. 25(3), 306–309 (2013).
[Crossref]

J. Lumin. (2)

Y. Feng, Y. X. Zhou, Y. Q. Liu, G. B. Zhang, and X. Y. Zhang, “Photoluminescence spectra of nano-structured ZnO thin films,” J. Lumin. 119-120, 233–236 (2006).
[Crossref]

P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, and A. Yoshida, “Photoluminescence and absorption in sol-gel-derived ZnO films,” J. Lumin. 126(2), 800–806 (2007).
[Crossref]

J. Photochem. Photobiol. C-Photochem. Rev. (1)

S. T. Wang, Y. L. Song, and L. Jiang, “Photoresponsive surfaces with controllable wettability,” J. Photochem. Photobiol. C-Photochem. Rev. 8, 18–29 (2007).

J. Phys. Chem. B (1)

R. D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films,” J. Phys. Chem. B 105(10), 1984–1990 (2001).
[Crossref]

J. Phys. Chem. C (2)

A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, “ZnO-PDMS nanohybrids: a novel optical sensing platform for ethanol vapor detection at room temperature,” J. Phys. Chem. C 119(1), 623–631 (2015).
[Crossref]

E. L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, and C. Fotakis, “Reversible photoinduced wettability transition of hierarchical ZnO structures,” J. Phys. Chem. C 113(7), 2891–2895 (2009).
[Crossref]

J. R. Soc. Interface (1)

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[Crossref] [PubMed]

Lab Chip (2)

J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “Optofluidic-tunable color filters and spectroscopy based on liquid-crystal microflows,” Lab Chip 13(14), 2721–2726 (2013).
[Crossref] [PubMed]

X. Yang, T. Yuan, P. Teng, D. Kong, C. Liu, E. Li, E. Zhao, C. Tong, and L. Yuan, “An in-fiber integrated optofluidic device based on an optical fiber with an inner core,” Lab Chip 14(12), 2090–2095 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

F. Berghmans, T. Geernaert, T. Baghdasaryan, and H. Thienpont, “Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres,” Laser Photonics Rev. 8(1), 27–52 (2014).
[Crossref]

Materials (Basel) (1)

M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, “Luminescence from zinc oxide nanostructures and polymers and their hybrid devices,” Materials (Basel) 3(4), 2643–2667 (2010).
[Crossref]

Nat. Photonics (1)

D. Erickson, D. Sinton, and D. Psaltis, “Optofluidics for energy applications,” Nat. Photonics 5(10), 583–590 (2011).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Oilfield Review (1)

W. Abdallah, J. S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, H. Hussain, B. Montaron, and M. Ziauddin, “Fundamentals of wettability,” Oilfield Review 19, 44–61 (2007).

Opt. Commun. (1)

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

H. G. Chen, J. L. Shi, H. R. Chen, J. N. Yan, Y. S. Li, Z. L. Hua, Y. Yang, and D. S. Yan, “The preparation and photoluminescence properties of ZnO-MCM-41,” Opt. Mater. 25(1), 79–84 (2004).
[Crossref]

Optica (1)

Photonic Sensors (1)

M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber Technology: a new avenew for optical nanosensors,” Photonic Sensors 2(4), 289–314 (2012).
[Crossref]

Phys. Rev. B (1)

I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B 69(24), 245401 (2004).
[Crossref]

Prog. Quantum Electron. (1)

A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, “ZnO nanostructures for optoelectronics: Material properties and device applications,” Prog. Quantum Electron. 34(4), 191–259 (2010).
[Crossref]

Sens. Actuator B-Chem. (1)

C. D. Fernandez, M. G. Manera, G. Pellegrini, M. Bersani, G. Mattei, R. Rella, L. Vasanelli, and P. Mazzoldi, “Surface plasmon resonance optical gas sensing of nanostructured ZnO films,” Sens. Actuator B-Chem. 130(1), 531–537 (2008).
[Crossref]

Surf. Sci. (1)

M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation,” Surf. Sci. 511(1-3), 401–407 (2002).
[Crossref]

Thin Solid Films (2)

I. Konidakis, M. Androulidaki, G. Zito, and S. Pissadakis, “Growth of ZnO nanolayers inside the capillaries of photonic crystal fibres,” Thin Solid Films 555, 76–80 (2014).
[Crossref]

B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
[Crossref]

Other (2)

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 1998).

S. Pissadakis and S. Selleri, Optofluidics, Sensors and Actuators in Microstructured Optical Fibres (Woodhead Publishing, 2015).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (455 KB)      Water filling of a 700 µm ZnO-overlaid MOF cavity following exposure to UV light captured at 1200 fps.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic representation of the optofluidic actuation cycle and (b) principle of the all-optical actuation based on the reversible transition between hydrophobic and hydrophilic states of the fabricated ZnO structures upon laser irradiation exposures.
Fig. 2
Fig. 2 (a) Configuration of the SMF-28/(ZnO nanolayer HNA-5) Fabry-Perot interferometer. (b) Fabry-Perot reflection spectra over 10 nm of pristine and ZnO overlaid HNA-5 cavity with length of 780 μm. (c) SEM scan of the cleaved end face of the HNA-5 MOF, along with details of the ZnO nanolayer formed on the surface of the capillaries.
Fig. 3
Fig. 3 (a) Photographs of the shape of a 5 μL water droplet on ZnO nanolayer before and after irradiation with 248 nm excimer laser. (b) Contact angle variation against total energy dose of exposures using 248 nm excimer laser (black filled points) and 254 nm pencil lamp (semi-filled black points) radiation. (c) Photographs of the shape of a 5 μL water droplet on ZnO nanolayer pre-exposed to 248 nm excimer laser radiation before and after irradiation with green laser. (d) Contact angle variation against total energy dose of exposure of the ZnO UV pre-irradiated samples after reversing irradiation using a cw green laser at 532 nm.
Fig. 4
Fig. 4 Fabry-Perot reflection spectra of SMF-28/(ZnO nanolayer HNA-5) interferometer throughout the optofluidic cycle, with the employment of the 248 nm laser (a) and the 254 nm pencil lamp (b) as UV sources. The MOF cavity length is 780 μm. (c) Fabry-Perot reflection spectra of the same cavity corresponding to a three full cycles operation (see text).
Fig. 5
Fig. 5 (a) Fabry-Perot reflection spectra of SMF-28/(ZnO nanolayer HNA-5) interferometer that has been treated with UV laser exposure, i.e. 3 minutes with total energy dose of 76.5 J/cm2, before and after immersion of the MOF end face in water. Temporal variation of fringe intensity during MOF cavity water filling –see Visualization 1- (b) and draining (c) for a randomly selected fringe (see text). The inset in (b) corresponds to the signal measured for a hydrophobic cavity. (d) Snapshot of the MOF cavity in the middle of draining process following incomplete green laser irradiation (see text). The MOF cavity length is 700 μm.
Fig. 6
Fig. 6 (a) Room temperature photoluminescence (PL) spectra of ZnO nanolayers synthesized within MOF cavities before and after laser exposures. (b) Spectrophotmetric measurements of ZnO films on silica substrates subjected to the optofluidic cycle UV and green laser radiation exposure conditions.

Metrics