Abstract

It is demonstrated that the Locally Corrected Nyström (LCN) method is a versatile and numerically efficient computational method for the modeling of scattering from plasmonic bowtie nanoantennas. The LCN method is a high-order analysis method that can provide exponential convergence. It is straightforward to implement, accurate and computationally efficient. To the best of the author’s knowledge, the high-order LCN is here applied for the first time to 3D nanostructures. Numerical results show the accuracy and efficiency of the LCN applied to the electromagnetic analysis of nanostructures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface integral formulations for the design of plasmonic nanostructures

Carlo Forestiere, Giovanni Iadarola, Guglielmo Rubinacci, Antonello Tamburrino, Luca Dal Negro, and Giovanni Miano
J. Opt. Soc. Am. A 29(11) 2314-2327 (2012)

Prediction of metallic nano-optical trapping forces by finite element-boundary integral method

Xiao-Min Pan, Kai-Jiang Xu, Ming-Lin Yang, and Xin-Qing Sheng
Opt. Express 23(5) 6130-6144 (2015)

On the convergence and accuracy of the FDTD method for nanoplasmonics

Antonino Calà Lesina, Alessandro Vaccari, Pierre Berini, and Lora Ramunno
Opt. Express 23(8) 10481-10497 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
    [Crossref]
  2. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
    [Crossref] [PubMed]
  3. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Applications of field-enhanced near-field optical microscopy,” Ultramicroscopy 100(3-4), 413–419 (2004).
    [Crossref] [PubMed]
  4. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
    [Crossref]
  6. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” J. Appl. Phys. 70, 1354–1356 (1997).
  7. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
    [Crossref]
  8. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  9. K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [Crossref]
  10. N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
    [Crossref] [PubMed]
  11. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  12. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
    [Crossref] [PubMed]
  13. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
    [Crossref]
  14. T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
    [Crossref]
  15. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
    [Crossref] [PubMed]
  16. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28(7), 1341–1348 (2011).
    [Crossref] [PubMed]
  17. M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express 20(8), 9161–9171 (2012).
    [Crossref] [PubMed]
  18. G. Forestiere, G. Iadarola, G. Rubinacci, A. Tamburrino, L. Dal Negro, and G. Miano, “Surface integral formulations for the design of plasmonic nanostructures,” J. Opt. Soc. Am. A 29(11), 2314–2327 (2012).
    [Crossref]
  19. D. Gedney and J. C. Young, The Locally Corrected Nyström Method for Electromagnetics (Springer, 2014), Ch. 5.
  20. L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
    [Crossref]
  21. O. V. Shapoval, J. Ctyroky, and A. I. Nosich, “Mathematical simulation of optical nanoantenna based on a comb-like finite nanostrip grating,” in 2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO, 2013), pp. 61–65.
    [Crossref]
  22. R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3(1), 1–15 (1989).
    [Crossref]
  23. A. Zhu, S. D. Gedney, and J. L. Visher, “A study of combined field formulations for material scattering for a locally corrected Nyström discretization,” IEEE Trans. Antenn. Propag. 53(12), 4111–4120 (2005).
    [Crossref]
  24. S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis functions for the locally corrected Nyström method,” IEEE Trans. Antenn. Propag. 52(11), 2996–3004 (2004).
    [Crossref]
  25. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2013 (1)

D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
[Crossref]

2012 (2)

2011 (2)

2010 (2)

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

2009 (1)

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

2008 (2)

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[Crossref] [PubMed]

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

2006 (1)

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

2005 (2)

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

A. Zhu, S. D. Gedney, and J. L. Visher, “A study of combined field formulations for material scattering for a locally corrected Nyström discretization,” IEEE Trans. Antenn. Propag. 53(12), 4111–4120 (2005).
[Crossref]

2004 (4)

S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis functions for the locally corrected Nyström method,” IEEE Trans. Antenn. Propag. 52(11), 2996–3004 (2004).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Applications of field-enhanced near-field optical microscopy,” Ultramicroscopy 100(3-4), 413–419 (2004).
[Crossref] [PubMed]

2003 (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[Crossref]

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

1998 (1)

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” J. Appl. Phys. 70, 1354–1356 (1997).

1989 (1)

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3(1), 1–15 (1989).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Araújo, M.

D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
[Crossref]

Araújo, M. G.

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[Crossref]

Aubard, J.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Bachelot, R.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Applications of field-enhanced near-field optical microscopy,” Ultramicroscopy 100(3-4), 413–419 (2004).
[Crossref] [PubMed]

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Applications of field-enhanced near-field optical microscopy,” Ultramicroscopy 100(3-4), 413–419 (2004).
[Crossref] [PubMed]

Cabrini, S.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

Canino, L. F.

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

Challener, W.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

Chang, S.-W.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuang, S. L.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Crozier, K. B.

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Dal Negro, L.

de Lamaestre, R. E.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Dhuey, S.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

Ding, W.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Félidj, N.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Forestiere, G.

Fromm, D. P.

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Galler, N.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Gedney, S. D.

A. Zhu, S. D. Gedney, and J. L. Visher, “A study of combined field formulations for material scattering for a locally corrected Nyström discretization,” IEEE Trans. Antenn. Propag. 53(12), 4111–4120 (2005).
[Crossref]

S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis functions for the locally corrected Nyström method,” IEEE Trans. Antenn. Propag. 52(11), 2996–3004 (2004).
[Crossref]

Grand, J.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” J. Appl. Phys. 70, 1354–1356 (1997).

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Harrington, R. F.

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3(1), 1–15 (1989).
[Crossref]

Hohenau, A.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Höppener, C.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[Crossref] [PubMed]

Iadarola, G.

Jin, E. X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Kino, G. S.

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Kostcheev, S.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Krenn, J. R.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Landesa, L.

Laurent, G.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Lévi, G.

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

Lin, T.-R.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Lu, C.-C.

S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis functions for the locally corrected Nyström method,” IEEE Trans. Antenn. Propag. 52(11), 2996–3004 (2004).
[Crossref]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[Crossref]

Miano, G.

Moerner, W.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Moerner, W. E.

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[Crossref] [PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Applications of field-enhanced near-field optical microscopy,” Ultramicroscopy 100(3-4), 413–419 (2004).
[Crossref] [PubMed]

Obelleiro, F.

Ottusch, J. J.

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” J. Appl. Phys. 70, 1354–1356 (1997).

Rivero, J.

Royer, P.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

Rubinacci, G.

Rubiños-López, J.

D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
[Crossref]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” J. Appl. Phys. 70, 1354–1356 (1997).

Schuck, P. J.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Sendur, K.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

Solís, D.

D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
[Crossref]

Solís, D. M.

Stalzer, M. A.

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Sundaramurthy, K.

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Taboada, J.

D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
[Crossref]

Taboada, J. M.

Tamburrino, A.

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Visher, J. L.

A. Zhu, S. D. Gedney, and J. L. Visher, “A study of combined field formulations for material scattering for a locally corrected Nyström discretization,” IEEE Trans. Antenn. Propag. 53(12), 4111–4120 (2005).
[Crossref]

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

Wandzura, S. M.

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

Weber-Bargioni, A.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

Wu, S. W.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

Xu, X.

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

Zhang, Z.

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

Zhu, A.

A. Zhu, S. D. Gedney, and J. L. Visher, “A study of combined field formulations for material scattering for a locally corrected Nyström discretization,” IEEE Trans. Antenn. Propag. 53(12), 4111–4120 (2005).
[Crossref]

S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis functions for the locally corrected Nyström method,” IEEE Trans. Antenn. Propag. 52(11), 2996–3004 (2004).
[Crossref]

Appl. Phys. Lett. (2)

E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006).
[Crossref]

T.-R. Lin, S.-W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

A. Zhu, S. D. Gedney, and J. L. Visher, “A study of combined field formulations for material scattering for a locally corrected Nyström discretization,” IEEE Trans. Antenn. Propag. 53(12), 4111–4120 (2005).
[Crossref]

S. D. Gedney, A. Zhu, and C.-C. Lu, “Study of mixed-order basis functions for the locally corrected Nyström method,” IEEE Trans. Antenn. Propag. 52(11), 2996–3004 (2004).
[Crossref]

J. Appl. Phys. (2)

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108(12), 124314 (2010).
[Crossref]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” J. Appl. Phys. 70, 1354–1356 (1997).

J. Chem. Phys. (2)

N. Félidj, J. Grand, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, N. Galler, F. R. Aussenegg, and J. R. Krenn, “Multipolar surface plasmon peaks on gold nanotriangles,” J. Chem. Phys. 128(9), 094702 (2008).
[Crossref] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Comput. Phys. (1)

L. F. Canino, J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M. Wandzura, “Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization,” J. Comput. Phys. 146(2), 627–663 (1998).
[Crossref]

J. Electromagn. Waves Appl. (1)

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3(1), 1–15 (1989).
[Crossref]

J. Microsc. (1)

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Nano Lett. (3)

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ‘bowtie’ nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Opt. Commun. (1)

D. Solís, J. Taboada, M. Araújo, F. Obelleiro, and J. Rubiños-López, “Design of optical wide-band log-periodic nanoantennas using surface integral equation techniques,” Opt. Commun. 301, 61–66 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

K. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ultramicroscopy (1)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Applications of field-enhanced near-field optical microscopy,” Ultramicroscopy 100(3-4), 413–419 (2004).
[Crossref] [PubMed]

Other (2)

D. Gedney and J. C. Young, The Locally Corrected Nyström Method for Electromagnetics (Springer, 2014), Ch. 5.

O. V. Shapoval, J. Ctyroky, and A. I. Nosich, “Mathematical simulation of optical nanoantenna based on a comb-like finite nanostrip grating,” in 2013 IEEE XXXIII International Scientific Conference Electronics and Nanotechnology (ELNANO, 2013), pp. 61–65.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Comparison of the LCN solution (p = 2) via the PMCHWT and Müller formulations with the analytical Mie series solution for the 200 nm radius gold nanosphere.
Fig. 2
Fig. 2 Geometry of the bowtie nanoantennas meshed with a total of 226 quadratic quadrilateral cells. g is the gap size, α is the bow or gap angle, t is the hight, L is the length, W is the antenna width, and r is the rounded corner radii.
Fig. 3
Fig. 3 Bi-static RCS of the bowtie in the ϕ=0° plane with f = 467.7644 THz ( λ=641 nm ), ( θ inc , ϕ inc )=( 0°,0° ) , PMCWT and Müller formulation, for a discretization with 226 quadratic quadrilateral cells (total), LCN solution. (a) σ VV , (b) σ HH .
Fig. 4
Fig. 4 Equivalent electric current (a) and equivalent magnetic current (b) induced on the bowtie computed using Müller’s method, at f = 467.7644 THz ( λ=641 nm ) due to a normally incident vertically polarized plane wave ( E inc = x ^ e j k 0 z V/m) .
Fig. 5
Fig. 5 Plasmonic resonance of the bowtie nanoantenna, magnitude (a), and phase (b), of the electric field enhancement computed via (8).
Fig. 6
Fig. 6 . LCN vs. MoM, Error vs. N (a), CPU time vs. Error (b).

Tables (1)

Tables Icon

Table 1 Comparison of resources and errors for the LCN simulation of the 200 nm radius nanosphere at 467.7644 THz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E i scat ( J i , M i )= η i L i ( J i ) K i ( M i ) H i scat ( J i , M i )= K i ( J i )+ η i 1 L l ( M i )
L i ( X i )=j k i S [ I ¯ ¯ + 1 k i 2 ] X i ( r ) G i ( r , r )d s , K i ( X i )= S G i ( r , r )× X i ( r )d s ,
n ^ i × E i inc | S i,j + = M i,j n ^ i × E i scat | S i,j + n ^ i × E j inc | S i,j = M i,j + n ^ i × E j scat | S i,j n ^ i × H i inc | S i,j + = J i,j n ^ i × H i scat | S i,j + n ^ i × H j inc | S i,j = J i,j + n ^ i × H j scat | S i,j
α i [ n ^ i × E i inc | S i,j + M i,j n ^ i × E i scat | S i,j + ]+ α j [ n ^ i × E j inc | S i,j + M i,j + n ^ i × E j scat | S i,j ]=0
β i [ n ^ i × H i inc | S i,j + + J i,j n ^ i × H i scat | S i,j + ]+ β j [ n ^ i × H j inc | S i,j J i,j + n ^ i × H j scat | S i,j ]=0,
α i = α j =1, β i = β j =1,
α i = ε i , α j = ε j , β i = μ i , β j = μ j ,
f E = gap E scat d

Metrics