Abstract

A novel hybrid polarization-maintaining (PM) air-core photonic bandgap fiber (PBF) ring resonator is firstly demonstrated by using a conventional solid-core PM fiber optical coupler formed by splicing a section of PM air-core PBF into the resonator. Due to Fresnel reflections exist at the two junctions between the air-core PBF and the solid-core fiber, the forward output signal of this hybrid ring resonator is the normal resonant curve with the superposition of the lightwaves that experienced even numbers of Fresnel reflections and the backward output signal is composed of lightwaves that experienced odd numbers of Fresnel reflections. Rigorous derivations of the forward and backward output signals are given out. The biggest resonant depth and finesse of the hybrid air-core PBF ring resonator predicted are 0.352 and 6.3 respectively by assuming a splice loss of 1.8 dB per junction. These predictions are finally confirmed by testing both the forward and backward output signals of the hybrid ring resonator. With the countermeasures against the influences of the odd numbers of Fresnel reflections, a bias stability of 0.007°/s is successfully demonstrated in a hybrid PM air-core PBF ring-resonator gyro.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the reflection and loss of the hybrid air-core photonic-bandgap fiber ring resonator

Hanzhao Li, Jianjie Zhang, Linglan Wang, Huilian Ma, and Zhonghe Jin
Appl. Opt. 55(32) 9329-9333 (2016)

Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber

Yuchao Yan, Huilian Ma, and Zhonghe Jin
Opt. Express 23(3) 2002-2009 (2015)

Determination of the mode reflection coefficient in air-core photonic bandgap fibers

Vinayak Dangui, Michel J. F. Digonnet, and Gordon S. Kino
Opt. Express 15(9) 5342-5359 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
    [Crossref] [PubMed]
  2. F. Zarinetchi, R. E. Meyer, G. A. Sanders, and S. Ezekiel, “Passive resonator gyro,” Proc. SPIE 478, 122–127 (1984).
    [Crossref]
  3. G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).
  4. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
    [Crossref] [PubMed]
  5. K. Hotate and Y. Kikuchi, “Analysis of the thermo-optically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2001).
    [Crossref]
  6. X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator,” Opt. Express 21(1), 358–369 (2013).
    [Crossref] [PubMed]
  7. L. K. Strandjord and G. A. Sanders, “Passive stabilization of temperature dependent polarization errors of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 2510, 81–91 (1995).
    [Crossref]
  8. K. Takiguchi and K. Hotate, “Method to reduce the optical Kerr-effect induced bias in an optical passive ring-resonator gyro,” IEEE Photonics Technol. Lett. 4(2), 203–206 (1992).
    [Crossref]
  9. H. Ma, X. Li, G. Zhang, and Z. Jin, “Reduction of optical Kerr-effect induced error in a resonant micro-optic gyro by light-intensity feedback technique,” Appl. Opt. 53(16), 3465–3472 (2014).
    [Crossref] [PubMed]
  10. N. K. T. Photonics, “PM-1550-01 polarisation maintaining PCF,” [Datasheet]. (2013) [Online]. http://www.nktphotonics.com/files/files/PM-1550-01.pdf .
  11. V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Laser-driven photonic-bandgap fiber optic gyroscope with negligible Kerr-induced drift,” Opt. Lett. 34(7), 875–877 (2009).
    [Crossref] [PubMed]
  12. X. Zhao, J. Louveau, J. Chamoun, and M. J. Digonnet, “Thermal Sensitivity of the Birefringence of Air-Core Fibers and Implications for the RFOG,” J. Lightwave Technol. 32(14), 2577–2581 (2014).
    [Crossref]
  13. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.
    [Crossref]
  14. M. A. Terrel, J. F. Digonnet, and S. Fan, “Resonant fiber optic gyroscope using an air-core fiber,” J. Lightwave Technol. 30(7), 931–937 (2012).
    [Crossref]
  15. L. Feng, X. Ren, X. Deng, and H. Liu, “Analysis of a hollow core photonic bandgap fiber ring resonator based on micro-optical structure,” Opt. Express 20(16), 18202–18208 (2012).
    [Crossref] [PubMed]
  16. H. Ma, Z. Chen, and Z. Jin, “Single-polarization coupler based on air-core photonic bandgap fibers and implications for resonant fiber optic gyro,” J. Lightwave Technol. 32(1), 46–54 (2014).
    [Crossref]
  17. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37(16), 3342–3344 (2012).
    [Crossref] [PubMed]
  18. K. Z. Aghaie, M. J. Digonnet, and S. Fan, “Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers,” Opt. Lett. 35(12), 1938–1940 (2010).
    [Crossref] [PubMed]
  19. K. Z. Aghaie and M. J. Digonnet, “Sensitivity limit of a coupled-resonator optical waveguide gyroscope with separate input/output coupling,” J. Opt. Soc. Am. B 32(2), 339–344 (2015).
    [Crossref]
  20. Z. Jin, G. Zhang, H. Mao, and H. Ma, “Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,” Opt. Commun. 285(5), 645–649 (2012).
    [Crossref]
  21. T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” Proc. SPIE 9157, 91570B (2014).

2015 (1)

2014 (4)

2013 (1)

2012 (4)

2010 (1)

2009 (1)

2001 (1)

K. Hotate and Y. Kikuchi, “Analysis of the thermo-optically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2001).
[Crossref]

1995 (1)

L. K. Strandjord and G. A. Sanders, “Passive stabilization of temperature dependent polarization errors of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 2510, 81–91 (1995).
[Crossref]

1992 (2)

K. Takiguchi and K. Hotate, “Method to reduce the optical Kerr-effect induced bias in an optical passive ring-resonator gyro,” IEEE Photonics Technol. Lett. 4(2), 203–206 (1992).
[Crossref]

G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).

1984 (2)

1983 (1)

Aghaie, K. Z.

Chamoun, J.

Chen, Z.

Dangui, V.

Deng, X.

Digonnet, J. F.

Digonnet, M. J.

Digonnet, M. J. F.

Ezekiel, S.

F. Zarinetchi, R. E. Meyer, G. A. Sanders, and S. Ezekiel, “Passive resonator gyro,” Proc. SPIE 478, 122–127 (1984).
[Crossref]

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
[Crossref] [PubMed]

Fan, S.

Feng, L.

Higashiguchi, M.

Hotate, K.

K. Hotate and Y. Kikuchi, “Analysis of the thermo-optically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2001).
[Crossref]

K. Takiguchi and K. Hotate, “Method to reduce the optical Kerr-effect induced bias in an optical passive ring-resonator gyro,” IEEE Photonics Technol. Lett. 4(2), 203–206 (1992).
[Crossref]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
[Crossref] [PubMed]

Iwatsuki, K.

Jin, Z.

Kikuchi, Y.

K. Hotate and Y. Kikuchi, “Analysis of the thermo-optically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2001).
[Crossref]

Kino, G. S.

Li, X.

Liu, H.

Louveau, J.

Ma, H.

Mao, H.

Z. Jin, G. Zhang, H. Mao, and H. Ma, “Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,” Opt. Commun. 285(5), 645–649 (2012).
[Crossref]

Meyer, R. E.

F. Zarinetchi, R. E. Meyer, G. A. Sanders, and S. Ezekiel, “Passive resonator gyro,” Proc. SPIE 478, 122–127 (1984).
[Crossref]

R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8(12), 644–646 (1983).
[Crossref] [PubMed]

Qiu, T.

T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” Proc. SPIE 9157, 91570B (2014).

Ren, X.

Sanders, G. A.

T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” Proc. SPIE 9157, 91570B (2014).

L. K. Strandjord and G. A. Sanders, “Passive stabilization of temperature dependent polarization errors of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 2510, 81–91 (1995).
[Crossref]

G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).

F. Zarinetchi, R. E. Meyer, G. A. Sanders, and S. Ezekiel, “Passive resonator gyro,” Proc. SPIE 478, 122–127 (1984).
[Crossref]

Stowe, D. W.

Strandjord, L. K.

T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” Proc. SPIE 9157, 91570B (2014).

L. K. Strandjord and G. A. Sanders, “Passive stabilization of temperature dependent polarization errors of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 2510, 81–91 (1995).
[Crossref]

Takiguchi, K.

K. Takiguchi and K. Hotate, “Method to reduce the optical Kerr-effect induced bias in an optical passive ring-resonator gyro,” IEEE Photonics Technol. Lett. 4(2), 203–206 (1992).
[Crossref]

Tekippe, V. J.

Terrel, M. A.

Wu, J.

T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” Proc. SPIE 9157, 91570B (2014).

Yu, X.

Zarinetchi, F.

F. Zarinetchi, R. E. Meyer, G. A. Sanders, and S. Ezekiel, “Passive resonator gyro,” Proc. SPIE 478, 122–127 (1984).
[Crossref]

Zhang, G.

H. Ma, X. Li, G. Zhang, and Z. Jin, “Reduction of optical Kerr-effect induced error in a resonant micro-optic gyro by light-intensity feedback technique,” Appl. Opt. 53(16), 3465–3472 (2014).
[Crossref] [PubMed]

Z. Jin, G. Zhang, H. Mao, and H. Ma, “Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,” Opt. Commun. 285(5), 645–649 (2012).
[Crossref]

Zhao, X.

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

K. Takiguchi and K. Hotate, “Method to reduce the optical Kerr-effect induced bias in an optical passive ring-resonator gyro,” IEEE Photonics Technol. Lett. 4(2), 203–206 (1992).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Z. Jin, G. Zhang, H. Mao, and H. Ma, “Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,” Opt. Commun. 285(5), 645–649 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (5)

F. Zarinetchi, R. E. Meyer, G. A. Sanders, and S. Ezekiel, “Passive resonator gyro,” Proc. SPIE 478, 122–127 (1984).
[Crossref]

G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).

K. Hotate and Y. Kikuchi, “Analysis of the thermo-optically induced bias drift in resonator fiber optic gyro,” Proc. SPIE 4204, 81–88 (2001).
[Crossref]

L. K. Strandjord and G. A. Sanders, “Passive stabilization of temperature dependent polarization errors of a polarization-rotating resonator fiber optic gyroscope,” Proc. SPIE 2510, 81–91 (1995).
[Crossref]

T. Qiu, J. Wu, L. K. Strandjord, and G. A. Sanders, “Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering,” Proc. SPIE 9157, 91570B (2014).

Other (2)

N. K. T. Photonics, “PM-1550-01 polarisation maintaining PCF,” [Datasheet]. (2013) [Online]. http://www.nktphotonics.com/files/files/PM-1550-01.pdf .

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” in 18th International Optical Fiber Sensors Conference Technical Digest (Optical Society of America, 2006), paper ME6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Fresnel’s laws at the interface between the air-core PBF and the conventional soild-core PM fiber.
Fig. 2
Fig. 2 Configuration of the hybrid air-core PBF ring resonator.
Fig. 3
Fig. 3 Mathematic model of the lightwave propagating in the hybrid air-core PBF ring resonator.
Fig. 4
Fig. 4 Simplified mathematical model of the lightwave propagating in the hybrid air-core PBF ring resonator.
Fig. 5
Fig. 5 Final signal flow graph of the transfer function.
Fig. 6
Fig. 6 Simulation results of the output signals of the hybrid air-core PBF ring resonator.
Fig. 7
Fig. 7 Schematic for measurement of the output signals of the hybrid air-core PBF ring resonator.
Fig. 8
Fig. 8 Measured results both of the forward and backward signals output from the hybrid air-core PBF ring resonator.
Fig. 9
Fig. 9 Schematic diagram of the RFOG equipped with the hybrid PM air-core PBF ring resonator.
Fig. 10
Fig. 10 Measurement results of the open-loop RFOG equipped with the hybrid PM air-core PBF ring resonator for an integration time of 1s. (a) Typical outputs of the stationary RFOG in the running time for an hour. (b) Allan deviation of the open-loop output.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R= 10 α s /10 ( n PM n PBF n PM + n PBF ) 2 =0.02370
T= 10 α s /10 =0.6673.
P= i K 1 α c a PM expiω τ 1 ( 1R a PBF exp2iω τ 2 ) 1R a PBF exp2iω τ 2 T a PM ( 1K ) α c a PBF expiω( 2 τ 1 + τ 2 ) .
Q= a PM ( 1K ) α c exp2iω τ 1 ( R R ( R+T ) a PBF exp2iω τ 2 ) 1R a PBF exp2iω τ 2 T a PM ( 1K ) α c a PBF expiω( 2 τ 1 + τ 2 ) .
F( X )= T α PM α PBF expiω( X+2 τ 1 ) 1R α PBF exp2iω τ 2 .
G= ( 1K ) α c .
H 1 =G K α c ( ( a PBF R F( 2 τ 2 )+ a PM R exp2iω τ 1 )Q+F( τ 2 ) ) 1( a PM R Gexp2iω τ 1 a PBF R GF( 2 τ 2 ) )QGF( τ 2 ) .
H 2 = i K α c ( a PBF R a PM F( 2 τ 2 τ 1 )+ a PM R expiω τ 1 )P 1( a PM exp2iω τ 1 a PBF F( 2 τ 2 ) ) R GQGF( τ 2 ) .

Metrics