Abstract

We proposed a three-dimensional model to simulate terahertz generation from LiNbO3 crystal under intense laser excition (up to ~50 mJ/cm2). The impact of three-photon absorption, which leads to free carrier generation and free carrier saturation (when pump fluence above ~10 mJ/cm2) on terahertz generation was investigated. And further with this model, we stated the optimized experimental conditions (incident postion, beam diameter, and pulse duration, etc) for maximum generation efficiency in commonly-used tilted-pulse-front scheme. Red shift of spectrum, spatial distribution “splitting” effects of emitted THz beam, and primilary experimental verification under intense laser excitation are given.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser

Sen-Cheng Zhong, Jun Li, Zhao-Hui Zhai, Li-Guo Zhu, Jiang Li, Ping-Wei Zhou, Jian-Heng Zhao, and Ze-Ren Li
Opt. Express 24(13) 14828-14835 (2016)

High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge

Gy. Polónyi, B. Monoszlai, G. Gäumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp
Opt. Express 24(21) 23872-23882 (2016)

Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses

Maksim Kunitski, Martin Richter, Mark D. Thomson, Arno Vredenborg, Jian Wu, Till Jahnke, Markus Schöffler, Horst Schmidt-Böcking, Hartmut G. Roskos, and Reinhard Dörner
Opt. Express 21(6) 6826-6836 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  2. J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
    [Crossref] [PubMed]
  3. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg₂SiO₄ laser,” Opt. Lett. 39(23), 6632–6635 (2014).
    [Crossref] [PubMed]
  4. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [Crossref]
  5. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  6. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref] [PubMed]
  7. S. W. Huang, E. Granados, W. R. Huang, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
    [Crossref] [PubMed]
  8. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “THz-pump/THz-probe spectroscopy of semiconductors at high field strengths,” J. Opt. Soc. Am. B 26(9), A29–A34 (2009).
    [Crossref]
  9. R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves 33(8), 861–869 (2012).
    [Crossref]
  10. S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
    [Crossref] [PubMed]
  11. E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
    [Crossref]
  12. S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
    [Crossref]
  13. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
    [Crossref] [PubMed]
  14. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
    [Crossref] [PubMed]
  15. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
    [Crossref] [PubMed]
  16. X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O. D. Mücke, and F. X. Kärtner, “Terahertz Generation in Lithium Niobate Driven by Ti:Sapphire Laser Pulses and its Limitations,” Opt. Lett. 39(18), 5403–5406 (2014).
    [Crossref] [PubMed]
  17. S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21(12), 13930–13937 (2013).
    [Crossref] [PubMed]
  18. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
    [Crossref] [PubMed]
  19. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref] [PubMed]
  20. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [Crossref]
  21. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
    [Crossref]
  22. D. E. Zelmon, D. L. Small, and D. Lundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319 (1997).
    [Crossref]
  23. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  24. S. Enwei, “Experimental investigations of optical nonlinear absorption and refraction in Hf: LiNbO3 crystal,” Dissertation for the Master Degree in Science (2007).
  25. L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
    [Crossref]
  26. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [Crossref]
  27. A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
    [Crossref] [PubMed]
  28. A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
    [Crossref]
  29. H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
    [Crossref]

2015 (1)

2014 (4)

2013 (3)

2012 (2)

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves 33(8), 861–869 (2012).
[Crossref]

2011 (4)

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

2010 (2)

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (3)

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2004 (1)

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

2002 (1)

1997 (1)

1996 (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Agranat, M. B.

Ahr, F.

Almasi, G.

Almási, G.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Ashitkov, S. I.

Balogh, E.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Bartal, B.

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Bodrov, S. B.

S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Bonacina, L.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
[Crossref] [PubMed]

Carbajo, S.

Chekalin, S. V.

Chen, H.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
[Crossref]

Chen, X.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
[Crossref]

Chi, C. C.

Chu, W.-C.

Cirmi, G.

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Dombi, P.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Farkas, G.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Field, R. W.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Fleischer, S.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Fortov, V. E.

Fülöp, J. A.

Granados, E.

Hauri, C. P.

Hebling, J.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “THz-pump/THz-probe spectroscopy of semiconductors at high field strengths,” J. Opt. Soc. Am. B 26(9), A29–A34 (2009).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Henin, S.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Hoffmann, M. C.

Hong, K. H.

Huang, S. W.

Huang, W. R.

Hwang, H. Y.

Ippen, E. P.

Karsch, S.

Kärtner, F.

Kärtner, F. X.

Kasparian, J.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

Klingebiel, S.

Kobayashi, T.

Kovacs, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Kozma, I.

Krausz, F.

Ku, S. A.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

Lengyel, K.

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Lombosi, C.

Lundt, D.

Luo, C. W.

Malkov, Y. A.

S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Matsunaga, R.

R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves 33(8), 861–869 (2012).
[Crossref]

Mücke, O. D.

Murzanev, A. A.

S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Nanni, E. A.

Nelson, K. A.

Ollmann, Z.

Ovchinnikov, A. V.

Pálfalvi, L.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Petit, Y.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Ravi, K.

Schimpf, D. N.

Sergeev, Y. A.

S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Shimano, R.

R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves 33(8), 861–869 (2012).
[Crossref]

Skrobol, C.

Small, D. L.

Stepanov, A. G.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
[Crossref] [PubMed]

Stepanov, A. N.

S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Szipöcs, R.

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Tosa, V.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Tu, C. M.

Varju, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Vicario, C.

Watanabe, S.

R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves 33(8), 861–869 (2012).
[Crossref]

Wolf, J.-P.

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

A. G. Stepanov, L. Bonacina, S. V. Chekalin, and J.-P. Wolf, “Generation of 30 μJ single-cycle terahertz pulses at 100Hz repetition rate by optical rectification,” Opt. Lett. 33(21), 2497–2499 (2008).
[Crossref] [PubMed]

Wu, K. H.

Wu, X.

Xia, Y.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
[Crossref]

Yabushita, A.

Yeh, K.-L.

Zapata, L. E.

Zelmon, D. E.

Zhang, Y.

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
[Crossref]

Zhou, Y.

Appl. Phys. B (1)

A. G. Stepanov, S. Henin, Y. Petit, L. Bonacina, J. Kasparian, and J.-P. Wolf, “Mobile source of high-energy single-cycle terahertz pulses,” Appl. Phys. B 101(1-2), 11–14 (2010).
[Crossref]

Appl. Phys. Lett. (4)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

J. Appl. Phys. (2)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, K. Polgár, K. Lengyel, and R. Szipöcs, “Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3,” J. Appl. Phys. 95(3), 902–908 (2004).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

R. Shimano, S. Watanabe, and R. Matsunaga, “Intense terahertz pulse-induced nonlinear responses in carbon nanotubes,” J. Infrared Millim. Terahertz Waves 33(8), 861–869 (2012).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Phys. (1)

H. Chen, X. Chen, Y. Zhang, and Y. Xia, “Ablation Induced by Single- and Multiple-Femtosecond Laser Pulses in Lithium Niobate,” Laser Phys. 17(12), 1378–1381 (2007).
[Crossref]

Opt. Express (8)

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21(12), 13930–13937 (2013).
[Crossref] [PubMed]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Phys. Rev. A (1)

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Phys. Rev. Lett. (1)

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Other (1)

S. Enwei, “Experimental investigations of optical nonlinear absorption and refraction in Hf: LiNbO3 crystal,” Dissertation for the Master Degree in Science (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometry of 3-D spatial model for THz generation and the coordinates used. γ is the required pulse front tilt angle, r0 is the pump beam waist radius, d is the distance between the center of the pump beam and the tip of the crystal, Lp = d tanγ is the pump beam propagation length.
Fig. 2
Fig. 2 (a) Free carrier density Nfc as a function of pump fluence, and (b) FCA coefficient αfc under 200-fs laser excitation (as an example) as a function of THz frequency under different pump fluence (FCA coefficient under the rest pump fluence and pulse duration used in our simulation are able to be calculated with Eq. (5)).
Fig. 3
Fig. 3 THz conversion efficiency η as a function of pump energy (fluence).
Fig. 4
Fig. 4 (a) Optimal incident position d (blue solid lines) and pump fluence threshold (PFT) (red dash lines) for the peak THz conversion efficiency (in Fig. 3) under different pump beam waist radius r 0, and (b) the corresponding peak THz conversion efficiency as a function of pump beam waist radius r 0 with optimal d and PFT.
Fig. 5
Fig. 5 Optimal pump beam waist radius r 0 (blue line) and corresponding maximal THz conversion efficiency (red line) as a function of pump pulse duration.
Fig. 6
Fig. 6 (a) Free carrier density as a function of pump fluence with saturation effect, insert: conrresponding FCA coefficient, and (b) THz conversion efficiency and corresponding THz pulse energy as a function of pump fluence: dash lines—simulation results without consideration of free carrier saturation, solid lines— simulation results with consideration of free carrier saturation.
Fig. 7
Fig. 7 The THz spectrum with the effect of 3PA for different pump fluence.
Fig. 8
Fig. 8 Simulation and experimental observation of the emitted THz beam spot. x’ and y’ correspond to coordinates in Fig. 1. (a) simulation with pump fluence of 1.3 mJ/cm2, (b) simulation with pump fluence of 13 mJ/cm2, (c) experiment with pump fluence of 2 mJ/cm2, (d) experiment with pump fluence of 16mJ/cm2.

Tables (1)

Tables Icon

Table 1 Coefficients of laser and materials used in our simulation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

z ' E T H z ( Ω , x ' , y ' , z') = i Ω 2 ε 0 c n ( Ω ) P N L ( Ω , x , y , z ) exp ( i Δ k z ' ) 1 2 α ( Ω , x ' , y ' , z ' ) E T H z ( Ω , x ' , y ' , z'),
α ( Ω , x ' , y ' , z ' ) = α ε ( Ω ) + α f c ( Ω , x ' , y ' , z ' ) .
α f c ( Ω , x ' , y ' , z ' ) = 2 Ω c Im [ ε ( 1 ω p 2 Ω 2 + i Ω / τ s c ) ] ,
ω p = e N f c / ε 0 ε m e f f ,
where N f c = I T z h c / λ 0 ( α 0 + 1 2 β 2 I + 1 3 γ 3 I 2 + ... ) ,
P N L ( Ω , x , y , z ) = 2 ε 0 d e f f 0 E p ( ω + Ω , x , y , z ) E p * ( ω , x , y , z ) d ω ,
E p ( x , y , 0 , t ) = 1 2 [ E 0 exp [ t 2 ( 1 + i C ) 2 T 0 2 ] exp ( i ω 0 t ) + c .c . ] S ( x , y ) .
E p ( x , y , z , ω ) = E p ( x , y , 0 , ω ) exp [ i 2 β g ( ω ω 0 ) 2 z ] = E 0 T 0 2 π ( 1 + i C ) exp [ ( ω ω 0 ) 2 T 0 2 2 ( 1 + i C ) ] exp [ i 2 β g ( ω ω 0 ) 2 z ] S ( x , y )
P N L ( Ω , x , y , z ) = ε 0 d e f f E 0 2 T 0 π exp { Ω 2 [ ( T 0 2 + β g Cz) 2 + β g 2 z 2 ] 4 T 0 2 } S ( x , y ) 2 .

Metrics