Abstract

We present a pilot demonstration of an optical fiber based refractive index (RI) sensor involving the deposition of graphene onto the surface of a segment of a photonic crystal fiber (PCF) in a fiber-based Mach-Zehnder Interferometer (MZI). The fabrication process is relatively simple and only involves the fusion splicing of a PCF between two single mode fibers. The deposition process relies only on the cold transfer of graphene onto the PCF segment, without the need for further physical or chemical treatment. The graphene overlay modified the sensing scheme of the MZI RI sensor, allowing the sensor to overcome limitations to its detectable RI range due to free spectral range issues. This modification also allows for continuous measurements to be obtained without the need for reference values for the range of RIs studied and brings to light the potential for simultaneous dual parameter sensing. The sensor was able to achieve a RI sensitivity of 9.4 dB/RIU for the RIs of 1.33-1.38 and a sensitivity of 17.5 dB/RIU for the RIs of 1.38-1.43. It also displayed good repeatability and the results obtained were consistent with the modeling.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber

Nan Zhang, Georges Humbert, Zhifang Wu, Kaiwei Li, Perry Ping Shum, Nancy Meng Ying Zhang, Ying Cui, Jean-Louis Auguste, Xuan Quyen Dinh, and Lei Wei
Opt. Express 24(24) 27674-27682 (2016)

Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer

Ming Deng, Chang-Ping Tang, Tao Zhu, Yun-Jiang Rao, Lai-Cai Xu, and Meng Han
Appl. Opt. 49(9) 1593-1598 (2010)

High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai
Appl. Opt. 50(28) 5503-5507 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
    [Crossref]
  2. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [Crossref] [PubMed]
  3. K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
    [Crossref]
  4. W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
    [Crossref] [PubMed]
  5. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
    [Crossref]
  6. W. Zhou, W. C. Wong, C. C. Chan, L. Y. Shao, and X. Dong, “Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer,” Appl. Opt. 50(19), 3087–3092 (2011).
    [Crossref] [PubMed]
  7. L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
    [Crossref]
  8. C. L. Zhao, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
    [Crossref]
  9. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref] [PubMed]
  10. Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
    [Crossref]
  11. J. Ju and W. Jin, “Photonic Crystal Fiber Sensors for Strain and Temperature Measurement,” J. Sens. 2009, 1–10 (2009).
    [Crossref]
  12. J. Ju and W. Jin, “Long period gratings in photonic crystal fibers,” Photonic Sensors 2(1), 65–70 (2012).
    [Crossref]
  13. V. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. Sotsky, and L. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13(19), 7609–7614 (2005).
    [Crossref] [PubMed]
  14. D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
    [Crossref]
  15. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  16. J. Mathew, Y. Semenova, and G. Farrell, “Photonic Crystal Fiber Interferometer for Dew Detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
    [Crossref]
  17. C. Wu, B. O. Guan, C. Lu, and H. Y. Tam, “Salinity sensor based on polyimide-coated photonic crystal fiber,” Opt. Express 19(21), 20003–20008 (2011).
    [Crossref] [PubMed]
  18. M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 1185–1189 (2012).
    [Crossref]
  19. W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
    [Crossref]
  20. Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
    [Crossref]
  21. T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
    [Crossref]
  22. Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Carbon-nanotube-deposited photonic crystal fiber for refractive index sensing,” Proc.SPIE-OFS23, 91577Y–91577Y–4 (2014).
  23. Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
    [Crossref]
  24. F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett. 3(13), 1746–1753 (2012).
    [Crossref] [PubMed]
  25. J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Opt. Lett. 39(16), 4769–4772 (2014).
    [Crossref] [PubMed]
  26. J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
    [Crossref]
  27. B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
    [Crossref]
  28. Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref] [PubMed]
  29. Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
    [Crossref] [PubMed]
  30. M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
    [Crossref]
  31. Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
    [Crossref]
  32. H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology 21(29), 295709 (2010).
    [Crossref] [PubMed]
  33. H. A. Macleod, Thin-film Optical Filters, 4th ed. (CRC/Taylor & Francis, 2010).
  34. G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
    [Crossref]
  35. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  36. S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
    [Crossref]
  37. Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
    [Crossref]
  38. M. Jiang, Q. Li, J. Wang, W. Yao, Z. Jin, Q. Sui, J. Shi, F. Zhang, L. Kia, and W. Dong, “Optical response of fiber-optic Fabry-Perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films,” J. Lightwave Technol. 31(14), 2321–2326 (2013).
    [Crossref]
  39. S. Pevec and D. Donlagic, “Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index,” Opt. Lett. 39(21), 6221–6224 (2014).
    [Crossref] [PubMed]
  40. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [Crossref]

2014 (9)

J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Opt. Lett. 39(16), 4769–4772 (2014).
[Crossref] [PubMed]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

S. Pevec and D. Donlagic, “Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index,” Opt. Lett. 39(21), 6221–6224 (2014).
[Crossref] [PubMed]

2013 (3)

M. Jiang, Q. Li, J. Wang, W. Yao, Z. Jin, Q. Sui, J. Shi, F. Zhang, L. Kia, and W. Dong, “Optical response of fiber-optic Fabry-Perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films,” J. Lightwave Technol. 31(14), 2321–2326 (2013).
[Crossref]

Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
[Crossref]

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

2012 (6)

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30(8), 1185–1189 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett. 3(13), 1746–1753 (2012).
[Crossref] [PubMed]

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

J. Ju and W. Jin, “Long period gratings in photonic crystal fibers,” Photonic Sensors 2(1), 65–70 (2012).
[Crossref]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic Crystal Fiber Interferometer for Dew Detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

2011 (4)

2010 (3)

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology 21(29), 295709 (2010).
[Crossref] [PubMed]

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

2009 (4)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

J. Ju and W. Jin, “Photonic Crystal Fiber Sensors for Strain and Temperature Measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

2008 (6)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

C. L. Zhao, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[Crossref] [PubMed]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

2007 (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

2005 (1)

Ahmad, F.

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

Ahmad, H.

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

Araújo, F. M.

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Badenes, G.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Bang, O.

Batumalay, M.

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

Bock, W. J.

Brabant, D.

Caldas, P.

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Calixto, S.

Cao, X. L.

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chan, C. C.

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
[Crossref]

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

W. Zhou, W. C. Wong, C. C. Chan, L. Y. Shao, and X. Dong, “Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer,” Appl. Opt. 50(19), 3087–3092 (2011).
[Crossref] [PubMed]

Chen, L. H.

Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

Chen, Y.

Chen, Y. F.

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Cheng, Y.

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Chiang, K. S.

Choi, H. Y.

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

Chow, K. K.

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

Coleman, J. N.

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

Dash, J. N.

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

Demokan, M. S.

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Dong, W.

Dong, X.

Dong, X. Y.

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Donlagic, D.

Du, H.

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Duesberg, G. S.

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

Eftimov, T.

Eggleton, B. J.

Farrell, G.

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ferreira, L. A.

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Frazão, O.

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Gaskell, P. E.

H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology 21(29), 295709 (2010).
[Crossref] [PubMed]

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Gong, Y.

Guan, B. O.

Harun, S. W.

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

He, Z.

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Ho, H. L.

Hu, L. M.

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Jha, R.

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

Ji, W. B.

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jiang, M.

Jin, W.

Jin, Z.

Ju, J.

J. Ju and W. Jin, “Long period gratings in photonic crystal fibers,” Photonic Sensors 2(1), 65–70 (2012).
[Crossref]

J. Ju and W. Jin, “Photonic Crystal Fiber Sensors for Strain and Temperature Measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

C. L. Zhao, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]

Keeley, G. P.

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

Kia, L.

Koratkar, N.

F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett. 3(13), 1746–1753 (2012).
[Crossref] [PubMed]

Kreuzer, M. P.

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

Kuhlmey, B. T.

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, B. H.

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

Lee, K. X.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

Leong, K. C.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

Li, Q.

Li, T.

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Liu, B.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Lu, C.

Ma, J.

Mamidala, V.

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

Mathew, J.

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

McEvoy, N.

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

Md Nor, R.

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Miao, Y. P.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Mikulic, P.

Minkovich, V.

Minkovich, V. P.

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Monzon-Hernandez, D.

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

Monzón-Hernández, D.

Ni, K.

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

O’Neill, A.

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

Paek, U.-C.

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

Park, K. S.

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

Park, S. J.

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

Peltekis, N.

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

Pevec, S.

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Pruneri, V.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Qian, W. W.

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Rao, Y.

Rao, Y. J.

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Rindorf, L.

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Santos, J. L.

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Semenova, Y.

Shao, L. Y.

Shi, J.

Shum, P. P.

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Silva, S. F. O.

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Skulason, H. S.

H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology 21(29), 295709 (2010).
[Crossref] [PubMed]

Smietana, M.

Sotskaya, L.

Sotsky, A.

Sui, Q.

Szkopek, T.

H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology 21(29), 295709 (2010).
[Crossref] [PubMed]

Tam, H. Y.

Tan, Y. C.

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Tjin, S. C.

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

Tou, Z. Q.

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

Villatoro, J.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

V. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. Sotsky, and L. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13(19), 7609–7614 (2005).
[Crossref] [PubMed]

Wang, C.

Wang, J.

Wang, Y. P.

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Wang, Z.

Wang, Z. G.

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Wong, W. C.

Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
[Crossref]

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

W. Zhou, W. C. Wong, C. C. Chan, L. Y. Shao, and X. Dong, “Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer,” Appl. Opt. 50(19), 3087–3092 (2011).
[Crossref] [PubMed]

Wu, C.

Wu, D. K. C.

Wu, Y.

Xiao, L. M.

Xuan, H.

Yao, B.

Yao, B. C.

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Yao, W.

Yavari, F.

F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett. 3(13), 1746–1753 (2012).
[Crossref] [PubMed]

Zhang, A.

Zhang, A. Q.

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

Zhang, F.

Zhang, S. Q.

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Zhang, W.

Zhao, C. L.

Zhao, Q. D.

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Zhou, W.

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Zhu, Y.

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Zu, P.

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Zulkepeley, N. R.

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93(19), 191106 (2008).
[Crossref]

D. Monzon-Hernandez, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

IEEE Photonics J. (1)

L. M. Hu, C. C. Chan, X. Y. Dong, Y. P. Wang, P. Zu, W. C. Wong, W. W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach-Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technol. Lett. 25(6), 556–559 (2013).
[Crossref]

J. N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technol. Lett. 26(11), 1092–1095 (2014).
[Crossref]

IEEE Sens. J. (3)

T. Li, X. Y. Dong, C. C. Chan, K. Ni, S. Q. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

M. Batumalay, S. W. Harun, F. Ahmad, R. Md Nor, N. R. Zulkepeley, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sens. J. 14(5), 1704–1709 (2014).
[Crossref]

K. S. Park, H. Y. Choi, S. J. Park, U.-C. Paek, and B. H. Lee, “Temperature robust refractive index sensor based on a photonic crystal fiber interferometer,” IEEE Sens. J. 10(6), 1147–1148 (2010).
[Crossref]

J. Lightwave Technol. (4)

J. Mater. Chem. (1)

G. P. Keeley, A. O’Neill, N. McEvoy, N. Peltekis, J. N. Coleman, and G. S. Duesberg, “Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene,” J. Mater. Chem. 20(36), 7864–7869 (2010).
[Crossref]

J. Phys. Chem. Lett. (1)

F. Yavari and N. Koratkar, “Graphene-based chemical sensors,” J. Phys. Chem. Lett. 3(13), 1746–1753 (2012).
[Crossref] [PubMed]

J. Sens. (1)

J. Ju and W. Jin, “Photonic Crystal Fiber Sensors for Strain and Temperature Measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

Nanotechnology (1)

H. S. Skulason, P. E. Gaskell, and T. Szkopek, “Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers,” Nanotechnology 21(29), 295709 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach-Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Opt. Eng. (1)

S. F. O. Silva, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, and L. A. Ferreira, “Optical fiber refractometer based on a Fabry-Pérot interferometer,” Opt. Eng. 47(5), 054403 (2008).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. P. Miao, B. Liu, and Q. D. Zhao, “Refractive index sensor based on measuring the transmission power of tilted fiber Bragg grating,” Opt. Fiber Technol. 15(3), 233–236 (2009).
[Crossref]

Opt. Lett. (8)

S. Pevec and D. Donlagic, “Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index,” Opt. Lett. 39(21), 6221–6224 (2014).
[Crossref] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[Crossref] [PubMed]

W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett. 36(9), 1731–1733 (2011).
[Crossref] [PubMed]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[Crossref] [PubMed]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, Y. Gong, W. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Opt. Lett. 39(20), 6030–6033 (2014).
[Crossref] [PubMed]

J. Ma, W. Jin, H. Xuan, C. Wang, and H. L. Ho, “Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film,” Opt. Lett. 39(16), 4769–4772 (2014).
[Crossref] [PubMed]

Photonic Sensors (1)

J. Ju and W. Jin, “Long period gratings in photonic crystal fibers,” Photonic Sensors 2(1), 65–70 (2012).
[Crossref]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Sens. Actuators B Chem. (5)

Y. C. Tan, W. B. Ji, V. Mamidala, K. K. Chow, and S. C. Tjin, “Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications,” Sens. Actuators B Chem. 196, 260–264 (2014).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Q. Zhang, Y. Gong, Y. J. Rao, Z. G. Wang, and Y. F. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuators B Chem. 194, 142–148 (2014).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sens. Actuators B Chem. 174, 563–569 (2012).
[Crossref]

Y. Zhu, Z. He, and H. Du, “Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,” Sens. Actuators B Chem. 131(1), 265–269 (2008).
[Crossref]

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Continuous refractive index sensing based on carbon-nanotube-deposited photonic crystal fibers,” Sens. Actuators B Chem. 202, 1097–1102 (2014).
[Crossref]

Other (2)

Y. C. Tan, Z. Q. Tou, V. Mamidala, K. K. Chow, and C. C. Chan, “Carbon-nanotube-deposited photonic crystal fiber for refractive index sensing,” Proc.SPIE-OFS23, 91577Y–91577Y–4 (2014).

H. A. Macleod, Thin-film Optical Filters, 4th ed. (CRC/Taylor & Francis, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the (a) photonic crystal fiber (PCF) spliced between two single mode fibers (SMFs) to form a PCF Mach-Zehnder Interferometer (MZI) and (b) the refractive index (RI) sensing element formed by the deposition of a graphene overlay.
Fig. 2
Fig. 2 Experimental setups for (a) the deposition of the graphene overlay onto the PCF segment using a spray gun and (b) for RI measurements with various test solutions of different RIs.
Fig. 3
Fig. 3 (a) Raman spectra of the graphene solution and (b) Scanning electron microscope (SEM) image of the graphene deposited on a silicon wafer.
Fig. 4
Fig. 4 (a) Optical microscope images of the PCF segment before (above) and after (below) the deposition of the graphene overlay under the same magnification and (b) output spectrum before (dotted line) and after (solid line) the deposition of the graphene overlay.
Fig. 5
Fig. 5 (a) Output spectra of the sensing element, focusing particularly on the variation of the selected interference dip at 1577.68 nm when the sensing element was immersed in various solutions of different RIs. (b) Plot of the change in intensity of the interference dip shown in (a) against the RI of the various solutions for two separate trials (diamonds and triangles) conducted one week apart. The nonlinear behavior of the sensing element to variations in RI is illustrated by the single fitting curve (solid line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I total = E core 2 + i=1 n E clad,i 2 +2 i=1 n [ ( E core E clad,i ) 1/2 cos 2π( n core n clad,i )L λ ] +2 i1 n1 j=i+1 n [ ( E clad,i E clad,j ) 1/2 cos 2π( n clad,i n clad,j )L λ ]
R= | r 23 + r 34 e i k ˜ G 1+ r 23 r 34 e i k ˜ G | 2
r 2,3 = n clad n ˜ G n clad + n ˜ G
r 3,4 = n ˜ G n env n ˜ G + n env
k ˜ G = 4π n ˜ G d G λ = 4πn d G λ i 4πk d G λ = β G ia d G

Metrics