Abstract

We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral characteristics of terahertz radiation from plasmonic photomixers

Shang-Hua Yang and Mona Jarrahi
Opt. Express 23(22) 28522-28530 (2015)

Photomixing at 1.55 μm in ion-irradiated In0.53Ga0.47As on InP

N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd, and E. Fertein
Opt. Express 14(5) 1856-1861 (2006)

Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation

Christopher W. Berry, Mohammad R. Hashemi, Sascha Preu, Hong Lu, Arthur C. Gossard, and Mona Jarrahi
Opt. Lett. 39(15) 4522-4524 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. V. Siles and J. Grajal, “Physics-based design and optimization of schottky diode frequency multipliers for terahertz applications,” IEEE Trans. Microw. Theory Tech. 58(7), 1933–1942 (2010).
    [Crossref]
  2. M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
    [Crossref]
  3. http://vadiodes.com/
  4. S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
    [Crossref]
  5. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  6. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [Crossref]
  7. M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
    [Crossref]
  8. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  9. P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
    [Crossref]
  10. H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).
  11. M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).
  12. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011).
    [Crossref] [PubMed]
  13. R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
    [Crossref]
  14. A. R. Criado, P. Acedo, G. Carpintero, C. de Dios, and K. Yvind, “Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering,” Opt. Express 20(2), 1253–1260 (2012).
    [Crossref] [PubMed]
  15. F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
    [Crossref]
  16. J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
    [Crossref]
  17. B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
    [Crossref]
  18. R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
    [Crossref]
  19. S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
    [Crossref]
  20. J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
    [Crossref]
  21. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  22. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
    [Crossref] [PubMed]
  23. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
    [Crossref]
  24. Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. THz Waves 23, 819–839 (2002).
  25. C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
    [Crossref]
  26. M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci, Technol. 5, 391–397 (2015).
  27. S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).
  28. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  29. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
    [Crossref]
  30. S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
    [Crossref] [PubMed]
  31. B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
    [Crossref]
  32. N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).
  33. C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
    [Crossref]
  34. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
    [Crossref]
  35. A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
    [Crossref] [PubMed]

2015 (3)

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci, Technol. 5, 391–397 (2015).

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).

2014 (6)

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

2013 (2)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
[Crossref] [PubMed]

2012 (3)

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

A. R. Criado, P. Acedo, G. Carpintero, C. de Dios, and K. Yvind, “Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering,” Opt. Express 20(2), 1253–1260 (2012).
[Crossref] [PubMed]

2011 (6)

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, “Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer,” Opt. Express 19(16), 15397–15403 (2011).
[Crossref] [PubMed]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
[Crossref]

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
[Crossref] [PubMed]

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

2010 (2)

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

J. V. Siles and J. Grajal, “Physics-based design and optimization of schottky diode frequency multipliers for terahertz applications,” IEEE Trans. Microw. Theory Tech. 58(7), 1933–1942 (2010).
[Crossref]

2008 (2)

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

2007 (2)

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

2006 (1)

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

2005 (1)

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
[Crossref]

2002 (2)

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. THz Waves 23, 819–839 (2002).

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

1999 (2)

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

1995 (1)

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Acedo, P.

A. R. Criado, P. Acedo, G. Carpintero, C. de Dios, and K. Yvind, “Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering,” Opt. Express 20(2), 1253–1260 (2012).
[Crossref] [PubMed]

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Alouini, M.

Amann, A.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

Anandarajah, P. M.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

Asada, M.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

Bansal, R.

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. THz Waves 23, 819–839 (2002).

Barry, L. P.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belkin, M. A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Belyanin, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Berry, C. W.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Bowers, J. E.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Brunel, M.

Buckley, K.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

Byrne, D.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Capasso, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Carpintero, G.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

A. R. Criado, P. Acedo, G. Carpintero, C. de Dios, and K. Yvind, “Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering,” Opt. Express 20(2), 1253–1260 (2012).
[Crossref] [PubMed]

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Chtioui, M.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Cojocari, O.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
[Crossref]

Corbett, B.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[Crossref]

Criado, A. R.

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

de Dios, C.

Dohler, G. H.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Donegan, J. F.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Dong, J. W.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Dumitrescu, M.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Faist, J. J.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Fehse, R.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

Feiginov, M.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
[Crossref]

Fice, M. J.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Finlay, R.

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

Fischer, M.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Fleischer, S. B.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Frein, L.

Garidel, S.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Goodchild, D.

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Grajal, J.

J. V. Siles and J. Grajal, “Physics-based design and optimization of schottky diode frequency multipliers for terahertz applications,” IEEE Trans. Microw. Theory Tech. 58(7), 1933–1942 (2010).
[Crossref]

Guo, W.-H.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Han, S.-P.

Hansmann, S.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Hong, J.

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

Hsieh, B.-Y.

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

Huo, Y.

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. THz Waves 23, 819–839 (2002).

Ibbetson, J. P.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Jarrahi, M.

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci, Technol. 5, 391–397 (2015).

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

Jeon, M. Y.

Jimenez, A.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Jones, D.

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
[Crossref]

Jones, D. R.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

Kadow, C.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Kelly, B.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
[Crossref]

Kervella, G.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Kim, N.

Ko, H.

Koch, M.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

Koch, S. W.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Lambkin, P.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Lamela, H.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Lamponi, M.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Lealman, I. F.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Lee, C. W.

Lee, D.

Leem, Y. A.

Lelarge, F.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Li, W.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Loas, G.

Lu, H.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Lu, Q.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Malzer, S.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Maxwell, G. D.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

McDonald, D.

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[Crossref]

Meissner, P.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
[Crossref]

Moodie, D. G.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Naglic, L.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Noh, S. K.

O’Brien, S.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

O’Gorman, J.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
[Crossref]

O’Reilly, E. P.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Osborne, S.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

Palmstrom, C. J.

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Park, K. H.

Patchell, J.

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
[Crossref]

Pavlovic, L.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Pessa, M.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Phelan, R.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Ponnampalam, L.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation,” Opt. Lett. 39(15), 4522–4524 (2014).
[Crossref] [PubMed]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Rahimi-Iman, A.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

Renaud, C. C.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Robert, Y.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Robertson, M. J.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Roda, C.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Rogers, C.

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

Rogers, D. C.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Rolland, A.

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rouvalis, E.

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

Roycroft, B.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Ryu, H.-C.

Seeds, A. J.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Shams, H.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

Shao, T.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

Siles, J. V.

J. V. Siles and J. Grajal, “Physics-based design and optimization of schottky diode frequency multipliers for terahertz applications,” IEEE Trans. Microw. Theory Tech. 58(7), 1933–1942 (2010).
[Crossref]

Smyth, F.

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

Steed, R. J.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Stein, M.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

Sugiyama, H.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

Suzuki, S.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

Sydlo, C.

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
[Crossref]

Taylor, G. W.

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. THz Waves 23, 819–839 (2002).

Teranishi, A.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

Thompson, M.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Tong, R.

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Vallet, M.

Van Dijk, F.

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Vidmar, M.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Vilcot, J. P.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Vinet, E.

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Wang, L. J.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

White, I. H.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Wichmann, M.

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Williams, K. A.

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

Wittmann, A.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Xie, F.

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

Yang, S.-H.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).

S.-H. Yang and M. Jarrahi, “Enhanced light-matter interaction at nanoscale by utilizing high-aspect-ratio metallic gratings,” Opt. Lett. 38(18), 3677–3679 (2013).
[Crossref] [PubMed]

Yardimci, N. T.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).

Yokoyama, H.

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

Yvind, K.

Appl. Phys. Lett. (6)

M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, “Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz,” Appl. Phys. Lett. 99(23), 233506 (2011).
[Crossref]

S. Suzuki, M. Asada, A. Teranishi, H. Sugiyama, and H. Yokoyama, “Fundamental oscillation of resonant tunnelling diodes above 1 THz at room temperature,” Appl. Phys. Lett. 97(24), 242102 (2010).
[Crossref]

M. A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation,” Appl. Phys. Lett. 92(20), 201101 (2008).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, and C. J. Palmstrom, “Self-assembled ErAs islands in GaAs: growth and subpicosecond carrier dynamics,” Appl. Phys. Lett. 75(22), 3548–3550 (1999).
[Crossref]

Electron. Lett. (3)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

B. Corbett and D. McDonald, “Single longitudinal mode ridge waveguide 1.3 μm Fabry-Perot laser by modal perturbation,” Electron. Lett. 31(25), 2181–2182 (1995).
[Crossref]

P. Acedo, H. Lamela, S. Garidel, C. Roda, J. P. Vilcot, G. Carpintero, I. H. White, K. A. Williams, M. Thompson, W. Li, M. Pessa, M. Dumitrescu, and S. Hansmann, “Spectral characterisation of monolithic mode locked lasers for mm-wave generation and signal processing,” Electron. Lett. 42(16), 928–929 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Phelan, W.-H. Guo, Q. Lu, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O’Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44(4), 331–337 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Osborne, S. O’Brien, K. Buckley, R. Fehse, A. Amann, J. Patchell, B. Kelly, D. R. Jones, J. O’Gorman, and E. P. O’Reilly, “Design of single-mode and two-color Fabry–Pérot lasers with patterned refractive index,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1157–1163 (2007).
[Crossref]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

IEEE Photonics J. (1)

H. Shams, T. Shao, M. J. Fice, P. M. Anandarajah, C. C. Renaud, F. Van Dijk, L. P. Barry, and A. J. Seeds, “100 Gb/s multicarrier THz wireless transmission system with high frequency stability based on a gain-switched laser comb source,” IEEE Photonics J. 7(3), 1–11 (2015).

IEEE Photonics Technol. Lett. (2)

F. van Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

J. Hong, R. Finlay, R. Tong, C. Rogers, and D. Goodchild, “Simultaneous dual-wavelength operation in cascaded strongly gain-coupled DFB lasers,” IEEE Photonics Technol. Lett. 11(11), 1354–1356 (1999).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Continuous wave terahertz generation from ultra-fast InP based photodiodes,” IEEE Trans. Microw. Theory Tech. 60(3), 509–517 (2012).
[Crossref]

J. V. Siles and J. Grajal, “Physics-based design and optimization of schottky diode frequency multipliers for terahertz applications,” IEEE Trans. Microw. Theory Tech. 58(7), 1933–1942 (2010).
[Crossref]

IEEE Trans. THz Sci, Technol. (3)

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci, Technol. 5, 223–229 (2015).

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci, Technol. 5, 391–397 (2015).

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci, Technol. 4, 575–581 (2014).

J. Appl. Phys. (2)

B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

J. Infrared Millim. THz Waves (2)

M. Wichmann, M. Stein, A. Rahimi-Iman, S. W. Koch, and M. Koch, “Interferometric characterization of a semiconductor disk laser driven terahertz source,” J. Infrared Millim. THz Waves 35, 503–508 (2014).

Y. Huo, G. W. Taylor, and R. Bansal, “Planar log-periodic antennas on extended hemishperical silicon lenses for millimeter/submillimeter wave detection applications,” J. Infrared Millim. THz Waves 23, 819–839 (2002).

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

J. Patchell, D. Jones, B. Kelly, and J. O’Gorman, “Specifying the wavelength and temperature tuning range of a Fabry–Perot laser containing refractive index perturbations,” Proc. SPIE 5825, 11 (2005).
[Crossref]

Other (1)

http://vadiodes.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The D-DFB structure showing etched features in the ridge waveguide to achieve single mode lasing. (b) Two section D-DFB structure that offers dual wavelength operation through coupling of the laser cavities.
Fig. 2
Fig. 2 Optical spectra of the two section D-DFB laser offering two main spectral peaks in the 1550 nm wavelength range with a tunable frequency difference in 0.15-3 THz range.
Fig. 3
Fig. 3 Spectral measurements for the optical lines from the implemented two section D-DFB laser at frequency separations of 1.62 THz and 0.8 THz. The black curve represents the optical line which is common to the outputs of the laser with 1.62 THz and 0.8 THz separations. The red and blue curves represent the second line from the outputs with 1.62 THz and 0.8 THz separations, respectively.
Fig. 4
Fig. 4 Schematic diagram and scanning electron microscope (SEM) images of the fabricated ErAs:InGaAs plasmonic photomixer with plasmonic contact electrode gratings are shown in (a) and (b) respectively.
Fig. 5
Fig. 5 Experimental setup for characterizing the terahertz source based on the two section D-DFB laser and plasmonic photomixer.
Fig. 6
Fig. 6 (a) The induced photomixer photocurrent as a function of the average optical pump power and bias voltage. (b) The radiated terahertz power as a function of the induced photocurrent at each CW radiation cycle at different optical pump powers and radiation frequencies. (c) The radiated terahertz power at each CW radiation cycle as a function of the average optical pump power over a 3 THz range. (d) The radiated terahertz power at each CW radiation cycle as a function of the average optical pump power and bias voltage at 1.62 THz.

Tables (1)

Tables Icon

Table 1 Operation conditions offering different spectral separations for the output of the two section D-DFB laser

Metrics