Abstract

In this work, two all polarization-maintaining (PM) high-birefringence (Hi-Bi) fiber loop mirrors (FLM) which are immune to external polarization perturbations are validated both theoretically and experimentally. Simplified and stable versions of classical FLMs were attained using a PM-coupler and by fusing the different Hi-Bi fiber sections with an adequate rotation angle between them. Since the polarization states are fixed along the whole fiber loop, no polarization controllers are needed. This simplifies the operation and increases the stability of the systems, which were also validated as ultra-high resolution sensors, experimentally obtaining a resolution of 6.2∙10−4 °C without averaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-birefringence fiber loop mirrors and their applications as sensors

Yange Liu, Bo Liu, Xinhuan Feng, Weigang Zhang, Guang Zhou, Shuzhong Yuan, Guiyun Kai, and Xiaoyi Dong
Appl. Opt. 44(12) 2382-2390 (2005)

High-birefringence fiber loop mirror sensor using a WDM fused fiber coupler

D. J. Passos, Manuel J. Marques, and Orlando Frazão
Opt. Lett. 38(15) 2927-2929 (2013)

Tunable comb filters and refractive index sensors based on fiber loop mirror with inline high birefringence microfiber

Wa Jin, Chao Wang, Haifeng Xuan, and Wei Jin
Opt. Lett. 38(21) 4277-4280 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
    [Crossref]
  2. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44(12), 2382–2390 (2005).
    [Crossref] [PubMed]
  3. S. Li, K. S. Chiang, and W. A. Gambling, “Gain flattening of an erbium doped fiber amplifier using a High-Birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
    [Crossref]
  4. A. M. R. Pinto, M. Bravo, M. Fernandez-Vallejo, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser,” Opt. Express 19(12), 11906–11915 (2011).
    [Crossref] [PubMed]
  5. S. Chung, B. A. Yu, and B. Lee, “Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation,” IEEE Photonics Technol. Lett. 15(5), 715–717 (2003).
    [Crossref]
  6. O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
    [Crossref]
  7. D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28(24), 3542–3547 (2010).
    [Crossref]
  8. M. Bravo, M. Fernández-Vallejo, M. Echapare, M. López-Amo, J. Kobelke, and K. Schuster, “Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser,” Opt. Express 21(3), 2971–2977 (2013).
    [Crossref] [PubMed]
  9. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19(8), 7596–7602 (2011).
    [Crossref] [PubMed]
  10. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express 17(21), 18501–18512 (2009).
    [Crossref] [PubMed]
  11. D. Leandro, M. Bravo, A. Ortigosa, and M. Lopez-Amo, “Real-Time FFT Analysis for Interferometric Sensors Multiplexing,” J. Lightwave Technol. 33(2), 354–360 (2015).
    [Crossref]

2015 (1)

2013 (1)

2011 (2)

2010 (1)

2009 (1)

2007 (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[Crossref]

2005 (1)

2003 (1)

S. Chung, B. A. Yu, and B. Lee, “Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation,” IEEE Photonics Technol. Lett. 15(5), 715–717 (2003).
[Crossref]

2001 (1)

S. Li, K. S. Chiang, and W. A. Gambling, “Gain flattening of an erbium doped fiber amplifier using a High-Birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

1988 (1)

D. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[Crossref]

Baptista, J. M.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[Crossref]

Barrera, D.

Bravo, M.

Cardenas-Sevilla, G. A.

Cárdenas-Sevilla, G. A.

Chiang, K. S.

S. Li, K. S. Chiang, and W. A. Gambling, “Gain flattening of an erbium doped fiber amplifier using a High-Birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

Childs, P. A.

Chung, S.

S. Chung, B. A. Yu, and B. Lee, “Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation,” IEEE Photonics Technol. Lett. 15(5), 715–717 (2003).
[Crossref]

Dong, X.

Echapare, M.

Feng, X.

Fernandez-Vallejo, M.

Fernández-Vallejo, M.

Finazzi, V.

Finazzi, V. P.

Frazão, O.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[Crossref]

Fu, H. Y.

Gambling, W. A.

S. Li, K. S. Chiang, and W. A. Gambling, “Gain flattening of an erbium doped fiber amplifier using a High-Birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

Kai, G.

Kobelke, J.

Leandro, D.

Lee, B.

S. Chung, B. A. Yu, and B. Lee, “Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation,” IEEE Photonics Technol. Lett. 15(5), 715–717 (2003).
[Crossref]

Li, S.

S. Li, K. S. Chiang, and W. A. Gambling, “Gain flattening of an erbium doped fiber amplifier using a High-Birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

Liao, Y. B.

Liu, B.

Liu, Y.

Lopez-Amo, M.

López-Amo, M.

Lu, C.

Minkovich, V. P.

Mortimore, D.

D. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[Crossref]

Ortigosa, A.

Pinto, A. M. R.

Pruneri, V.

Sales, S.

Santos, J. L.

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[Crossref]

Schuster, K.

Tam, H. Y.

Villatoro, J.

Wai, P. K. A.

Wong, A. C. L.

Yu, B. A.

S. Chung, B. A. Yu, and B. Lee, “Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation,” IEEE Photonics Technol. Lett. 15(5), 715–717 (2003).
[Crossref]

Yuan, S.

Zhang, W.

Zhou, G.

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

S. Li, K. S. Chiang, and W. A. Gambling, “Gain flattening of an erbium doped fiber amplifier using a High-Birefringence fiber loop mirror,” IEEE Photonics Technol. Lett. 13(9), 942–944 (2001).
[Crossref]

S. Chung, B. A. Yu, and B. Lee, “Phase response design of a polarization-maintaining fiber loop mirror for dispersion compensation,” IEEE Photonics Technol. Lett. 15(5), 715–717 (2003).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (4)

Sensors (Basel Switzerland) (1)

O. Frazão, J. M. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel Switzerland) 7(11), 2970–2983 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the all polarization maintaining FLM. (b) Simulated and measured transmission spectra of the proposed all-PM fiber loop mirror.
Fig. 2
Fig. 2 (a) Experimental and (b) equivalent scheme of the three-section all-PM FLM.
Fig. 3
Fig. 3 Experimental and simulated results of the three-section all-PM FLM with an all-silica section: (a) optical spectrum and (b) FFT amplitude. Temperature shift measured by (c) a reference probe, (d) the two-section all-PM FLM using the classical method, (e) the two-section all-PM FLM using the FFT method and (f) a simple Hi-Bi FLM using the FFT analysis.
Fig. 4
Fig. 4 Phase evolution of the main spatial frequency contributions during (a) the temperature and (b) strain tests. (c) High-resolution temperature measured experimentally.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T= [ sin( θ c )cos( ( πl λ 0 / L B λ )+Δϕ ) ] 2
T= [cos( β 1 + β 2 )cos( θ )sin( θ C )+cos( β 1 β 2 )sin( θ )cos( θ C )] 2 ; β n = π l n λ 0 L Bn λ +Δ ϕ n
T= [ cos( β 1 β 2 ) ] 2
T= [cos( ( β 1 β 2 )+ β 3 )cos( θ 2 )sin( θ 1 )+cos( ( β 1 β 2 ) β 3 )sin( θ 2 )cos( θ 1 )] 2 θ 1 + θ 2 =90°+180k      and       [ θ 1 , θ 2 ]0°+90k

Metrics