Abstract

Four-mode phase-sensitive (4MPS) process has been employed in a parametric mixer based wavelength multicaster, enhancing the multicasting conversion efficiency and signal-to-noise ratio. In addition, the 4MPS parametric multicaster is an outstanding candidate for all-optical regeneration, owing to its inherent capabilities to clamp amplitude fluctuations by the saturated parametric effect and to squeeze phase distortions by the phase sensitive process. The investigation in this paper focuses on the 4MPS multicaster operated in the saturation gain regime, including theoretical simulations and experimental demonstrations on amplitude and phase noise regeneration over 20 multicasting signal copies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband parametric multicasting via four-mode phase-sensitive interaction

Zhi Tong, Andreas O. J. Wiberg, Evgeny Myslivets, Bill P. P. Kuo, Nikola Alic, and Stojan Radic
Opt. Express 20(17) 19363-19373 (2012)

Noise performance of phase-insensitive multicasting in multi-stage parametric mixers

Christopher K. Huynh, Zhi Tong, Evgeny Myslivets, Andreas O. J. Wiberg, James R. Adleman, Sanja Zlatanovic, Everett W. Jacobs, and Stojan Radic
Opt. Express 21(1) 804-814 (2013)

Full quadrature regeneration of QPSK signals using sequential phase sensitive amplification and parametric saturation

K. R. H. Bottrill, G. Hesketh, L. Jones, F. Parmigiani, D. J. Richardson, and P. Petropoulos
Opt. Express 25(2) 696-705 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
    [Crossref]
  2. L. Thylen, G. Karlsson, and O. Nilsson, “Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics,” IEEE Commun. Mag. 34(2), 106–113 (1996).
    [Crossref]
  3. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
    [Crossref]
  4. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  5. C. J. McKinstrie and C. Xie, “Phase jitter in single-channel soliton systems with constant dispersion,” IEEE J. Sel. Top. Quantum Electron. 8(3), 616–625 (2002).
    [Crossref]
  6. P. V. Mamyshev and E. Telefon, “All-optical data regeneration based on self-phase modulation effect,” in ECOC 1998, 0.475–476.
  7. M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
    [Crossref] [PubMed]
  8. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
    [Crossref]
  9. Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
    [Crossref]
  10. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
    [Crossref]
  11. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12(7), 849–851 (2000).
    [Crossref]
  12. K. Inone, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1017 (2000).
    [Crossref]
  13. K. Inoue and T. Mukai, “Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier,” J. Lightwave Technol. 20(6), 969–974 (2002).
    [Crossref]
  14. E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 13(2), 142–144 (2001).
    [Crossref]
  15. M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
    [Crossref] [PubMed]
  16. M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
    [Crossref] [PubMed]
  17. C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
    [Crossref]
  18. K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
    [Crossref]
  19. M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
    [Crossref] [PubMed]
  20. M. Matsumoto and T. Kamio, “Nonlinear phase noise reduction of DQPSK signals by a phase-preserving amplitude limiter using four-wave mixing in fiber,” IEEE J. Sel. Top. Quantum Electron. 14(3), 610–615 (2008).
    [Crossref]
  21. X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27(18), 1616–1618 (2002).
    [Crossref] [PubMed]
  22. J. Hansryd, J. van Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photonics Technol. Lett. 17(1), 232–234 (2005).
    [Crossref]
  23. K. P. Ho, “Mid-span compensation of nonlinear phase noise,” Opt. Commun. 245(1-6), 391–398 (2005).
    [Crossref]
  24. C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of soliton phase jitter by in-line phase conjugation,” Opt. Lett. 28(17), 1519–1521 (2003).
    [Crossref] [PubMed]
  25. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [Crossref]
  26. A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22(19), 23512–23527 (2014).
    [Crossref] [PubMed]
  27. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
    [Crossref]
  28. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [Crossref]
  29. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  30. R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” in Conference on All-Optical Networking - Architecture, Control, and Management Issues 1998, 209–220.
  31. B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
    [Crossref]
  32. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [Crossref] [PubMed]
  33. Z. Tong, L. Liu, A. O. J. Wiberg, V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “First demonstration of four mode phase sensitive multicasting of optical channel,” in CLEO 2013, CTh5D.
  34. L. Liu, Z. Tong, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting,” Opt. Express 22(15), 18379–18388 (2014).
    [Crossref] [PubMed]
  35. L. Liu, Z. Tong, A. O. Wiberg, Y. Myslivets, P. P. Kuo, N. Alic, and S. Radic, “Conversion efficiency and crosstalk optimization in four-mode phase-sensitive multicasting mixer by vectorial phase manipulation,” in OFC 2014, Tu2K.4.
  36. T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in ECOC 2013, We.3.A.2.
  37. K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
    [Crossref]
  38. R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
    [Crossref]
  39. C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
    [Crossref] [PubMed]
  40. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20(17), 19363–19373 (2012).
    [Crossref] [PubMed]
  41. L. Liu, E. Temprana, V. Ataie, E. Myslivets, B. P. P. Kuo, A. O. J. Wiberg, N. Alic, and S. Radic, “Demonstration of enhanced amplitude regeneration in four-mode phase-sensitive parametric multicasting mixer,” in ECOC 2014, Tu.1.4.2.
  42. M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
    [Crossref]
  43. L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

2014 (2)

2012 (5)

2011 (1)

2010 (3)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

2009 (1)

2008 (4)

M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
[Crossref] [PubMed]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

M. Matsumoto and T. Kamio, “Nonlinear phase noise reduction of DQPSK signals by a phase-preserving amplitude limiter using four-wave mixing in fiber,” IEEE J. Sel. Top. Quantum Electron. 14(3), 610–615 (2008).
[Crossref]

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[Crossref]

2007 (2)

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[Crossref]

M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

J. Hansryd, J. van Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photonics Technol. Lett. 17(1), 232–234 (2005).
[Crossref]

K. P. Ho, “Mid-span compensation of nonlinear phase noise,” Opt. Commun. 245(1-6), 391–398 (2005).
[Crossref]

2003 (3)

C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of soliton phase jitter by in-line phase conjugation,” Opt. Lett. 28(17), 1519–1521 (2003).
[Crossref] [PubMed]

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

2002 (4)

K. Inoue and T. Mukai, “Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier,” J. Lightwave Technol. 20(6), 969–974 (2002).
[Crossref]

C. J. McKinstrie and C. Xie, “Phase jitter in single-channel soliton systems with constant dispersion,” IEEE J. Sel. Top. Quantum Electron. 8(3), 616–625 (2002).
[Crossref]

X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27(18), 1616–1618 (2002).
[Crossref] [PubMed]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

2001 (1)

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

2000 (4)

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

K. Inone, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1017 (2000).
[Crossref]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
[Crossref]

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

1996 (2)

L. Thylen, G. Karlsson, and O. Nilsson, “Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics,” IEEE Commun. Mag. 34(2), 106–113 (1996).
[Crossref]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

1990 (1)

Agarwal, A.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
[Crossref]

Alic, N.

L. Liu, Z. Tong, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting,” Opt. Express 22(15), 18379–18388 (2014).
[Crossref] [PubMed]

A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22(19), 23512–23527 (2014).
[Crossref] [PubMed]

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20(17), 19363–19373 (2012).
[Crossref] [PubMed]

B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

Andrekson, P. A.

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Ataie, V.

L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

Avramopoulos, H.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Balmefrezol, E.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Blow, K. J.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Bogris, A.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Boscolo, S.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Bougioukos, M.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Brindel, P.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Centanni, J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

Chraplyvy, A. R.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

Ciaramella, E.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

Corcoran, B.

Croussore, K.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[Crossref]

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[Crossref]

Curti, F.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Ellis, A. D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Elmirghani, J. M. H.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

Gordon, J. P.

Gruner-Nielsen, L.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Grüner-Nielsen, L.

Hansryd, J.

J. Hansryd, J. van Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photonics Technol. Lett. 17(1), 232–234 (2005).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Herstrom, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Ho, K. P.

K. P. Ho, “Mid-span compensation of nonlinear phase noise,” Opt. Commun. 245(1-6), 391–398 (2005).
[Crossref]

Inone, K.

K. Inone, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1017 (2000).
[Crossref]

Inoue, K.

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

Kakande, J.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Kamio, T.

M. Matsumoto and T. Kamio, “Nonlinear phase noise reduction of DQPSK signals by a phase-preserving amplitude limiter using four-wave mixing in fiber,” IEEE J. Sel. Top. Quantum Electron. 14(3), 610–615 (2008).
[Crossref]

Karlsson, G.

L. Thylen, G. Karlsson, and O. Nilsson, “Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics,” IEEE Commun. Mag. 34(2), 106–113 (1996).
[Crossref]

Karlsson, M.

Kouloumentas, C.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Kumar, P.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
[Crossref]

Kuo, B. P. P.

Lavigne, B.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Leclerc, O.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Li, G.

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[Crossref]

Li, G. F.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[Crossref]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Liu, L.

L. Liu, Z. Tong, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting,” Opt. Express 22(15), 18379–18388 (2014).
[Crossref] [PubMed]

L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

Liu, X.

Lundstrom, C.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Lundström, C.

Matsumoto, M.

Maziotis, A.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of soliton phase jitter by in-line phase conjugation,” Opt. Lett. 28(17), 1519–1521 (2003).
[Crossref] [PubMed]

X. Liu, X. Wei, R. E. Slusher, and C. J. McKinstrie, “Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation,” Opt. Lett. 27(18), 1616–1618 (2002).
[Crossref] [PubMed]

C. J. McKinstrie and C. Xie, “Phase jitter in single-channel soliton systems with constant dispersion,” IEEE J. Sel. Top. Quantum Electron. 8(3), 616–625 (2002).
[Crossref]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Mollenauer, L. F.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Morioka, Y.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Mouftah, H. T.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

Mukai, T.

Myslivets, E.

Nilsson, O.

L. Thylen, G. Karlsson, and O. Nilsson, “Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics,” IEEE Commun. Mag. 34(2), 106–113 (1996).
[Crossref]

Nissim, R. R.

O’Gorman, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Parmigiani, F.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Pejkic, A.

Petropoulos, P.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Phelan, R.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Pierre, L.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Radic, S.

L. Liu, Z. Tong, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting,” Opt. Express 22(15), 18379–18388 (2014).
[Crossref] [PubMed]

A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22(19), 23512–23527 (2014).
[Crossref] [PubMed]

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20(17), 19363–19373 (2012).
[Crossref] [PubMed]

B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of soliton phase jitter by in-line phase conjugation,” Opt. Lett. 28(17), 1519–1521 (2003).
[Crossref] [PubMed]

L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

Richardson, D. J.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Rouvillain, D.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Sakaguchi, H.

Sanuki, K.

Seguineau, F.

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Sjodin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavik, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Slavík, R.

Slusher, R. E.

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14(6), 942–954 (1996).
[Crossref]

Su, Y.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
[Crossref]

Sygletos, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Syvridis, D.

R. Slavík, A. Bogris, J. Kakande, F. Parmigiani, L. Grüner-Nielsen, R. Phelan, J. Vojtěch, P. Petropoulos, D. Syvridis, and D. J. Richardson, “Field-trial of an all-optical PSK regenerator/multicaster in a 40 Gbit/s, 38 channel DWDM transmission experiment,” J. Lightwave Technol. 30(4), 512–520 (2012).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Temprana, E.

L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

Thylen, L.

L. Thylen, G. Karlsson, and O. Nilsson, “Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics,” IEEE Commun. Mag. 34(2), 106–113 (1996).
[Crossref]

Tong, Z.

Trillo, S.

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

Turitsyn, S. K.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

van Howe, J.

J. Hansryd, J. van Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photonics Technol. Lett. 17(1), 232–234 (2005).
[Crossref]

Vojtech, J.

Wang, L.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
[Crossref]

Weerasuriya, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Wei, X.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

Wiberg, A. O. J.

Xie, C.

C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of soliton phase jitter by in-line phase conjugation,” Opt. Lett. 28(17), 1519–1521 (2003).
[Crossref] [PubMed]

C. J. McKinstrie and C. Xie, “Phase jitter in single-channel soliton systems with constant dispersion,” IEEE J. Sel. Top. Quantum Electron. 8(3), 616–625 (2002).
[Crossref]

Xu, C.

J. Hansryd, J. van Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photonics Technol. Lett. 17(1), 232–234 (2005).
[Crossref]

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

C. R. Phys. (1)

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “All-optical signal regeneration: from first principles to a 40 Gbit/s system demonstration,” C. R. Phys. 4(1), 163–173 (2003).
[Crossref]

Electron. Lett. (3)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “All-optical limiter using gain flattened fibre parametric amplifier,” Electron. Lett. 36(13), 1103–1105 (2000).
[Crossref]

K. Inone, “Optical level equalisation based on gain saturation in fibre optical parametric amplifier,” Electron. Lett. 36(12), 1016–1017 (2000).
[Crossref]

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[Crossref]

IEEE Commun. Mag. (2)

L. Thylen, G. Karlsson, and O. Nilsson, “Switching technologies for future guided wave optical networks: potentials and limitations of photonics and electronics,” IEEE Commun. Mag. 34(2), 106–113 (1996).
[Crossref]

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

C. J. McKinstrie and C. Xie, “Phase jitter in single-channel soliton systems with constant dispersion,” IEEE J. Sel. Top. Quantum Electron. 8(3), 616–625 (2002).
[Crossref]

M. Matsumoto and T. Kamio, “Nonlinear phase noise reduction of DQPSK signals by a phase-preserving amplitude limiter using four-wave mixing in fiber,” IEEE J. Sel. Top. Quantum Electron. 14(3), 610–615 (2008).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[Crossref]

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[Crossref]

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron. 18(2), 738–752 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J. Hansryd, J. van Howe, and C. Xu, “Experimental demonstration of nonlinear phase jitter compensation in DPSK modulated fiber links,” IEEE Photonics Technol. Lett. 17(1), 232–234 (2005).
[Crossref]

E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 13(2), 142–144 (2001).
[Crossref]

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK Regeneration at 40 Gb/s and beyond using a fiber-sagnac interferometer,” IEEE Photonics Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, “All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber,” IEEE Photonics Technol. Lett. 15(7), 957–959 (2003).
[Crossref]

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12(7), 849–851 (2000).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (2)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[Crossref]

Opt. Commun. (1)

K. P. Ho, “Mid-span compensation of nonlinear phase noise,” Opt. Commun. 245(1-6), 391–398 (2005).
[Crossref]

Opt. Express (9)

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[Crossref] [PubMed]

M. Matsumoto, “Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration,” Opt. Express 14(23), 11018–11023 (2006).
[Crossref] [PubMed]

M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15(13), 8094–8103 (2007).
[Crossref] [PubMed]

M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16(15), 11169–11175 (2008).
[Crossref] [PubMed]

M. Matsumoto and Y. Morioka, “Fiber-based all-optical regeneration of DPSK signals degraded by transmission in a fiber,” Opt. Express 17(8), 6913–6919 (2009).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20(17), 19363–19373 (2012).
[Crossref] [PubMed]

C. Lundström, B. Corcoran, M. Karlsson, and P. A. Andrekson, “Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation,” Opt. Express 20(19), 21400–21412 (2012).
[Crossref] [PubMed]

L. Liu, Z. Tong, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting,” Opt. Express 22(15), 18379–18388 (2014).
[Crossref] [PubMed]

A. Pejkic, R. R. Nissim, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “All-optical switching in a highly efficient parametric fiber mixer: design study,” Opt. Express 22(19), 23512–23527 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[Crossref]

Opt. Lett. (3)

Other (7)

R. Malli, X. Zhang, and C. Qiao, “Benefit of multicasting in all-optical networks,” in Conference on All-Optical Networking - Architecture, Control, and Management Issues 1998, 209–220.

L. Liu, Z. Tong, A. O. Wiberg, Y. Myslivets, P. P. Kuo, N. Alic, and S. Radic, “Conversion efficiency and crosstalk optimization in four-mode phase-sensitive multicasting mixer by vectorial phase manipulation,” in OFC 2014, Tu2K.4.

T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” in ECOC 2013, We.3.A.2.

L. Liu, E. Temprana, V. Ataie, B. P. P. Kuo, E. Myslivets, A. O. J. Wiberg, N. Alic, and S. Radic, “The first demonstration of phase and amplitude regenerative multicasting by a four-mode phase-sensitive process,” in IEEE Photonics Conference2014, WB2.4.

Z. Tong, L. Liu, A. O. J. Wiberg, V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “First demonstration of four mode phase sensitive multicasting of optical channel,” in CLEO 2013, CTh5D.

L. Liu, E. Temprana, V. Ataie, E. Myslivets, B. P. P. Kuo, A. O. J. Wiberg, N. Alic, and S. Radic, “Demonstration of enhanced amplitude regeneration in four-mode phase-sensitive parametric multicasting mixer,” in ECOC 2014, Tu.1.4.2.

P. V. Mamyshev and E. Telefon, “All-optical data regeneration based on self-phase modulation effect,” in ECOC 1998, 0.475–476.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Simulated configuration in Nonlinear Schrodinger Equation solver. P1, P2: two pumps, S1 to S4: four signals, AM: amplitude modulator, PM: phase modulator, HNLF: highly nonlinear fiber, SMF: single-mode fiber. (a) Spectral overview of pump and signal seedings in phase insensitive multicasting. (b) Spectral overview of pump and signal seedings for phase sensitive multicasting, wherein all four signals possess same data modulation and noise statistics, φ S10 = φ S20 = φ S30 = φ S40 = φ Data + φ noise .
Fig. 2
Fig. 2 Power transfer characteristics between output and input signals, as well as pump depletion versus input signal power. (a), power transfer curves for PS scheme, (b), power transfer curves for PI case.
Fig. 3
Fig. 3 (a) Simulated spectra of parametric mixer based wavelength multicasting under 4MPS (red curve) and PI (blue curve) operation modes. (b) Expanded spectra for 4MPS and PI wavelength multicasting.
Fig. 4
Fig. 4 Experimental architecture for all-optical multicaster and regenerator, consisting of five parts: creation of pump/signal seedings, pump recovery, signal processing, parametric mixer, and digital phase-locked loop (DPLL). LD: laser diode, AM: amplitude modulator, PM: phase modulator, PS: phase shifter, OP: optical processor, SL: slave laser, PZT: piezoelectric transducer, HNLF: highly nonlinear fiber, SMF: single mode fiber, MICP: microprocessor, ADC: analog-to-digital converter, DAC: digital-to-analog converter.
Fig. 5
Fig. 5 Experimental power transfer functions of the parametric wavelength multicasting under PI (a) and 4MPS (b) modes, as well as the pump depletion versus the input signal power.
Fig. 6
Fig. 6 Experimental multicasting spectra under saturated operation mode. (a) entire spectrum, (b) magnified spectrum for central 20 replicas
Fig. 7
Fig. 7 Experimental configuration for AN regeneration.
Fig. 8
Fig. 8 (a) BER curves for BTB with and without the artificial AN source, and the central 20 multicasting signal copies. (b) Q factor and eye diagram comparison between the multicasting output and input at the receiver sensitivity of −35 dBm. Q factor spectra for input BTB condition with 4% and 5% ENSR, was presented as blue and red solid curves with star, respectively. Q factor spectra for central 20 multicasting replicas with 4% and 5% ENSR, was presented as blue and red solid curves with dot, respectively
Fig. 9
Fig. 9 Experimental configuration for 4MPS multicaster as a phase noise regenerator.
Fig. 10
Fig. 10 (a) BER curves of the central 20 signal copies, characterizing the 4MPS multicaster performance as a phase regenerator, where the phase error amounted to ± 50°. (b), Red curve: Q factor corresponding to the received central 20 signal copies at the receiver sensitivity of −37 dBm. Blue curve: the corresponding receiver sensitivities at BER of 10−9 (error-free detection) for the central 20 multicasting copies.
Fig. 11
Fig. 11 (a) BER curves of the selected signal copies (8 copies), characterizing the 4MPS multicaster performance as a phase regenerator, (b) the corresponding constellation for input signal with ± 60° phase errors.
Fig. 12
Fig. 12 (a) BER curves of the selected signal copies (8 copies), characterizing the 4MPS multicaster performance as a phase regenerator, (b) the corresponding constellation for input signal with ± 75° phase errors.

Tables (2)

Tables Icon

Table 1 Simulated constellation comparison among input signal and output signals in the unsaturated and saturated gain regimes

Tables Icon

Table 2 Constellation comparison for the 4MPS multicasting output replicas at selected wavelengths with input phase error of ± 75°

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| A S2 |exp( i φ S2 )= G P 0 ( exp( i φ S20 )+exp( i φ S10 )+exp( i φ S30 )+exp( i φ S40 ) ) =4 G P 0 cos( φ Data + φ noise )

Metrics