Abstract

A THz time-domain spectroscopy-based vector network analyzer for S21-parameter measurements is presented providing THz waveforms as input signal for waveguide-coupled devices under test. We integrate an optical pulse shaper into the emitter arm and fiber-couple the photoconductive antennas to allow for flexible usage. The pulse-shaping capabilities are demonstrated by realizing all 5 bit combinations of a 0.5 THz signal. Furthermore, we can set the center wavelength of the resulting THz spectrum. Finally, we apply the shaped THz waveforms to test the response of a low-noise amplifier.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper

J. D. McKinney, D. E. Leaird, and A. M. Weiner
Opt. Lett. 27(15) 1345-1347 (2002)

Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser

Moon Sik Kong, Ji Su Kim, Sang Pil Han, Namje Kim, Kiwon Moon, Kyung Hyun Park, and Min Yong Jeon
Opt. Express 24(7) 7037-7045 (2016)

Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses

W. C. Hurlbut, B. J. Norton, N. Amer, and Yun-Shik Lee
J. Opt. Soc. Am. B 23(1) 90-93 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [Crossref]
  2. M. Van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
    [Crossref]
  3. S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
    [Crossref]
  4. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16, 17039–17051 (2008).
    [Crossref] [PubMed]
  5. D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [Crossref]
  6. H.-B. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415–423 (2006).
    [Crossref] [PubMed]
  7. J.-M. Ramer and G. von Freymann, “A terahertz time-domain spectroscopy-based network analyzer,” J. Light-wave Technol. 33, 403–407 (2015).
    [Crossref]
  8. M. Bieler, H. Fuser, and K. Pierz, “Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015).
    [Crossref]
  9. M. Y. Frankel, “Optoelectronic techniques for ultrafast device network analysis to 700 GHz,” Opt. Quant. Electron. 28, 783–800 (1996).
    [Crossref]
  10. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
    [Crossref] [PubMed]
  11. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
    [Crossref]
  12. H. Sardesai, C. Chang, and A. Weiner, “A femtosecond code-division multiple-access communication system test bed,” J. Lightwave Technol. 16, 1953–1964 (1998).
    [Crossref]
  13. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
    [Crossref]
  14. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1996).
    [Crossref]
  15. C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
    [Crossref]
  16. C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (Elsevier1983) 20, 63–153.
    [Crossref]
  17. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19, 2795 (2002).
    [Crossref]
  18. D. Brinks, R. Hildner, F. D. Stefani, and N. F. van Hulst, “Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments,” Opt. Express 19, 26486–26499 (2011).
    [Crossref]
  19. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
    [Crossref] [PubMed]
  20. M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001).
    [Crossref] [PubMed]

2015 (3)

J.-M. Ramer and G. von Freymann, “A terahertz time-domain spectroscopy-based network analyzer,” J. Light-wave Technol. 33, 403–407 (2015).
[Crossref]

M. Bieler, H. Fuser, and K. Pierz, “Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015).
[Crossref]

C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
[Crossref]

2013 (1)

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

2011 (1)

2009 (1)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

2006 (1)

2004 (1)

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[Crossref]

2002 (1)

2001 (1)

1999 (1)

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (2)

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1996).
[Crossref]

M. Y. Frankel, “Optoelectronic techniques for ultrafast device network analysis to 700 GHz,” Opt. Quant. Electron. 28, 783–800 (1996).
[Crossref]

1990 (1)

M. Van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Auston, D. H.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Baraniuk, R.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Bastiaans, G. J.

Bieler, M.

M. Bieler, H. Fuser, and K. Pierz, “Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015).
[Crossref]

Blackshire, J. L.

Bohn, M. J.

Brinks, D.

Brixner, T.

C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
[Crossref]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Chang, C.

Chen, Y.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Cheville, R. A.

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[Crossref]

Colombeau, B.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (Elsevier1983) 20, 63–153.
[Crossref]

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9, 191–199 (2001).
[Crossref] [PubMed]

Frankel, M. Y.

M. Y. Frankel, “Optoelectronic techniques for ultrafast device network analysis to 700 GHz,” Opt. Quant. Electron. 28, 783–800 (1996).
[Crossref]

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

Froehly, C.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (Elsevier1983) 20, 63–153.
[Crossref]

Fuser, H.

M. Bieler, H. Fuser, and K. Pierz, “Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015).
[Crossref]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

Gerber, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Grischkowsky, D.

M. Van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

Gupta, M.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Hacker, M.

Harmon, S. A.

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[Crossref]

Higuchi, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Hildner, R.

Hüter, O.

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Kannari, F.

Koch, M.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Konishi, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Kuwata-Gonokami, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Liu, H.-B.

Liu, Y.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1996).
[Crossref]

Meshulach, D.

Misawa, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Mittleman, D.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Neelamani, R.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Park, S.-G.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1996).
[Crossref]

Pierz, K.

M. Bieler, H. Fuser, and K. Pierz, “Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015).
[Crossref]

Ramer, J.-M.

J.-M. Ramer and G. von Freymann, “A terahertz time-domain spectroscopy-based network analyzer,” J. Light-wave Technol. 33, 403–407 (2015).
[Crossref]

Rudd, J.

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Sardesai, H.

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Schwarz, C.

Silberberg, Y.

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

Stefani, F. D.

Stobrawa, G.

Stoik, C. D.

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Tanabe, H.

Tanabe, T.

Teramura, Y.

Vampouille, M.

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (Elsevier1983) 20, 63–153.
[Crossref]

Van Exter, M.

M. Van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

van Hulst, N. F.

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

von Freymann, G.

J.-M. Ramer and G. von Freymann, “A terahertz time-domain spectroscopy-based network analyzer,” J. Light-wave Technol. 33, 403–407 (2015).
[Crossref]

Weiner, A.

Weiner, A. M.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1996).
[Crossref]

Yelin, D.

Yoshioka, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Zhang, X.-C.

Appl. Phys. B (1)

D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Appl. Phys. Lett. (2)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[Crossref]

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2, 709–719 (1996).
[Crossref]

IEEE Trans. Microw. Theory Techn. (1)

M. Bieler, H. Fuser, and K. Pierz, “Time-Domain Optoelectronic Vector Network Analysis on Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn. 63, 3775–3784 (2015).
[Crossref]

J. Chem. Phys. (1)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

J. Light-wave Technol. (1)

J.-M. Ramer and G. von Freymann, “A terahertz time-domain spectroscopy-based network analyzer,” J. Light-wave Technol. 33, 403–407 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature Photon. (1)

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nature Photon. 7, 724–731 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Quant. Electron. (1)

M. Y. Frankel, “Optoelectronic techniques for ultrafast device network analysis to 700 GHz,” Opt. Quant. Electron. 28, 783–800 (1996).
[Crossref]

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[Crossref] [PubMed]

Phys. Rev. B (1)

M. Van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B 41, 12140–12149 (1990).
[Crossref]

Other (1)

C. Froehly, B. Colombeau, and M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (Elsevier1983) 20, 63–153.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic overview of the optical setup.
Fig. 2
Fig. 2 Schematic overview of the terahertz beam path and fiber connections, FP: fiber-coupled polarizer.
Fig. 3
Fig. 3 Bit patterns generated by the setup. All patterns are normalized to the lowest pattern (00001). The position of each bit remains stable, as does the amplitude, regardless of the number of bits in the respective pattern.
Fig. 4
Fig. 4 Spectra of waveforms synthesizing different target frequencies under a Gaussian envelope. Solid blue line: 0.75 THz, dashed red line: 0.5 THz. Long dashed black line: reference spectrum. Inset: time domain signal of the two different frequencies generated.
Fig. 5
Fig. 5 Response of a LNA to bit pattern. S21 of LNA measured using a single input pulse (solid red) and a bit pattern (short dashed blue). Features below 270 GHz (gray line) are artefacts due to the lack of information in the reference spectrum (long dashed green, shifted by 50 dB). Above 270 GHz, both S21 measurements agree well. Inset: Bit pattern.

Metrics