Abstract

A confocal microspectrophotometer is utilized to scan the surface reflectivities of a polished gradient-index (GRIN) rod in the range of 400 to 900 nm. The pure fused silica is used to be a reference standard for deducing the absolute reflectivities of the Ge-doped core. Then, multi-wavelength refractive index profiles of the Ge-doped core can be further determined based on the Fresnel equation. Moreover, this work shows a connection between the material dispersion of the GRIN rod and the Ge-doped concentrations measured by an energy dispersive spectrometer. Finally, the dependence of the refractive index of the Ge-doped core on the doping concentrations at a certain wavelength can be easily expressed as a linear form.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exploiting the image of the surface reflectivity to measure refractive index profiling for various optical fibers

Chun-Jen Weng, Ken-Yuh Hsu, and Yung-Fu Chen
Opt. Express 23(9) 11755-11762 (2015)

Wavelength- and temperature-dependent measurement of refractive indices

Jan Jasny, Bernhard Nickel, and Pawel Borowicz
J. Opt. Soc. Am. B 21(4) 729-738 (2004)

Broadband measurements of the refractive indices of bulk gallium nitride

Steven R. Bowman, Christopher G. Brown, Michael Brindza, Guy Beadie, Jennifer K. Hite, Jaime A. Freitas, Charles R. Eddy, Jerry R. Meyer, and Igor Vurgaftman
Opt. Mater. Express 4(7) 1287-1296 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003).
    [Crossref] [PubMed]
  2. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
    [Crossref] [PubMed]
  3. M. Zickar, W. Noell, C. Marxer, and N. de Rooij, “MEMS compatible micro-GRIN lenses for fiber to chip coupling of light,” Opt. Express 14(10), 4237–4249 (2006).
    [Crossref] [PubMed]
  4. Y. Kokubun and K. Iga, “Refractive-index profile measurement of preform rods by a transverse differential interferogram,” Appl. Opt. 19(6), 846–851 (1980).
    [Crossref] [PubMed]
  5. Y. L. Chen, H. C. Hsieh, W. T. Wu, W. Y. Chang, and D. C. Su, “Alternative method for measuring the full-field refractive index of a gradient-index lens with normal incidence heterodyne interferometry,” Appl. Opt. 49(36), 6888–6892 (2010).
    [Crossref] [PubMed]
  6. V. I. Vlad, N. I. Pallas, and F. Bociort, “New treatment of the focusing method and tomography of the refractive index distribution of inhomogeneous optical components,” Opt. Eng. 35(5), 1305–1310 (1996).
    [Crossref]
  7. E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
    [Crossref]
  8. M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt. 20(19), 3415–3422 (1981).
    [Crossref] [PubMed]
  9. Y. F. Chao and K. Y. Lee, “Index profile of radial gradient index lens measured by imaging ellipsometric technique,” Jpn. J. Appl. Phys. 44(2), 1111–1114 (2005).
    [Crossref]
  10. T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
    [PubMed]
  11. Y. Youk and D. Y. Kim, “Tightly focused epimicroscope technique for submicrometer-resolved highly sensitive refractive index measurement of an optical waveguide,” Appl. Opt. 46(15), 2949–2953 (2007).
    [Crossref] [PubMed]
  12. C. J. Weng, K. Y. Hsu, and Y. F. Chen, “Exploiting the image of the surface reflectivity to measure refractive index profiling for various optical fibers,” Opt. Express 23(9), 11755–11762 (2015).
    [Crossref] [PubMed]
  13. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  14. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]

2015 (1)

2014 (1)

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

2010 (2)

2007 (1)

2006 (2)

2005 (1)

Y. F. Chao and K. Y. Lee, “Index profile of radial gradient index lens measured by imaging ellipsometric technique,” Jpn. J. Appl. Phys. 44(2), 1111–1114 (2005).
[Crossref]

2003 (1)

2002 (1)

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

1996 (1)

V. I. Vlad, N. I. Pallas, and F. Bociort, “New treatment of the focusing method and tomography of the refractive index distribution of inhomogeneous optical components,” Opt. Eng. 35(5), 1305–1310 (1996).
[Crossref]

1984 (1)

1981 (1)

1980 (1)

Acosta, E.

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Bociort, F.

V. I. Vlad, N. I. Pallas, and F. Bociort, “New treatment of the focusing method and tomography of the refractive index distribution of inhomogeneous optical components,” Opt. Eng. 35(5), 1305–1310 (1996).
[Crossref]

Brenner, M.

Chang, W. Y.

Chao, Y. F.

Y. F. Chao and K. Y. Lee, “Index profile of radial gradient index lens measured by imaging ellipsometric technique,” Jpn. J. Appl. Phys. 44(2), 1111–1114 (2005).
[Crossref]

Chen, Y. F.

Chen, Y. L.

Chen, Z.

de Rooij, N.

Deng, Z. C.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Fleming, J. W.

Flores, R.

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Garner, L.

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Guo, S.

Hsieh, H. C.

Hsu, K. Y.

Iga, K.

Jung, J. C.

Kim, D. Y.

Kokubun, Y.

Lee, K. Y.

Y. F. Chao and K. Y. Lee, “Index profile of radial gradient index lens measured by imaging ellipsometric technique,” Jpn. J. Appl. Phys. 44(2), 1111–1114 (2005).
[Crossref]

Marxer, C.

Mei, J. C.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Mukai, D.

Noell, W.

Pallas, N. I.

V. I. Vlad, N. I. Pallas, and F. Bociort, “New treatment of the focusing method and tomography of the refractive index distribution of inhomogeneous optical components,” Opt. Eng. 35(5), 1305–1310 (1996).
[Crossref]

Rios, S.

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Schnitzer, M. J.

Smith, G.

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Su, D. C.

Sun, T. Q.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Tian, J. G.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Vazques, D.

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Vlad, V. I.

V. I. Vlad, N. I. Pallas, and F. Bociort, “New treatment of the focusing method and tomography of the refractive index distribution of inhomogeneous optical components,” Opt. Eng. 35(5), 1305–1310 (1996).
[Crossref]

Wang, J.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Wang, X. W.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Weng, C. J.

Wu, W. T.

Xie, T.

Yablon, A. D.

Ye, Q.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Youk, Y.

Young, M.

Zhang, C. P.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Zhou, W. Y.

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Zickar, M.

Appl. Opt. (5)

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

Y. F. Chao and K. Y. Lee, “Index profile of radial gradient index lens measured by imaging ellipsometric technique,” Jpn. J. Appl. Phys. 44(2), 1111–1114 (2005).
[Crossref]

E. Acosta, R. Flores, D. Vazques, S. Rios, L. Garner, and G. Smith, “Tomographic method for measurement of the refractive index profile of optical fibre preforms and rod GRIN lenses,” Jpn. J. Appl. Phys. 41(7), 4821–4824 (2002).
[Crossref]

Opt. Eng. (1)

V. I. Vlad, N. I. Pallas, and F. Bociort, “New treatment of the focusing method and tomography of the refractive index distribution of inhomogeneous optical components,” Opt. Eng. 35(5), 1305–1310 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sci. Rep. (1)

T. Q. Sun, Q. Ye, X. W. Wang, J. Wang, Z. C. Deng, J. C. Mei, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Scanning focused refractive-index microscopy,” Sci. Rep. 4, 5647 (2014).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scheme of the experimental setup for scanning surface reflectivities on the GRIN rod comprising a halogen lamp, pinhole, objective lens, CCD and spectrometer. (b) The end-surface picture of the polished GRIN rod.
Fig. 2
Fig. 2 (a) Reflective intensities for the Ge-doped core center, F-doped cladding and fused silica cladding. (b) Broadband refractive indices in the core center and the F-doped cladding and their fitting curves.
Fig. 3
Fig. 3 (a) One-dimensional RIPs of the GRIN rod at the selected multiple wavelengths. (b) The spatially dependent profile of Ge-doped concentration on the GRIN core.
Fig. 4
Fig. 4 (a) Broadband refractive indices in the core for different GeO2 concentrations. (b) Dependence of dn/dλ on wavelength for different GeO2 concentrations.
Fig. 5
Fig. 5 Dependence of refractive index on the GeO2 concentrations at nine wavelengths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n Si O 2 (λ)= 1+ i=1 3 A i λ 2 λ 2 l i 2 with A i =( 0.6961663 0.4079426 0.8974794 ) and l i =( 0.0684043 0.1162414 9.8961610 ) .
R GRIN_rod (r,λ)= R Si O 2 (λ) I GRIN_rod (r,λ) I background (λ) I Si O 2 (λ) I background (λ) ,
n GRIN_rod (r,λ)= 1+ R GRIN_rod (r,λ) 1 R GRIN_rod (r,λ) .
δ n GRIN_rod (r,λ)= (1+ n GRIN_rod (r,λ)) 3 4( n GRIN_rod (r,λ)1) δ R GRIN_rod (r,λ)
n Ge O 2 (λ,C)= n Si O 2 (λ)+Cdn(λ)/dC with dn(λ)/dC= s=0 3 a s λ s ,

Metrics