Abstract

Entangled photons, an essential resource in quantum technology, are mostly generated in spontaneous processes, making it impossible to know if the quantum state is available for use; giving only a posteriori knowledge of the quantum state via destructive photon detection processes. There are schemes for heralding the generation of entangled photons but the heralding schemes developed to date only inform the generation of a predetermined quantum state with no capability of state control. Here, we report the phase and (probability-) amplitude controlled heralding, i.e., complete quantum state heralding, of multiphoton entangled states or N00N states. Since the phase and amplitude controls are inseparably integrated into the heralding mechanism, our scheme enables generation of N00N states with arbitrary phases and amplitudes. Such a flexible heralding scheme is expected to play important roles in various photonic quantum information applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum plasmonic N00N state in a silver nanowire and its use for quantum sensing

Yang Chen, Changhyoup Lee, Liu Lu, Di Liu, Yun-Kun Wu, Lan-Tian Feng, Ming Li, Carsten Rockstuhl, Guo-Ping Guo, Guang-Can Guo, Mark Tame, and Xi-Feng Ren
Optica 5(10) 1229-1235 (2018)

Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal

J. Shi, P. Xu, M. L. Zhong, Y. X. Gong, Y. F. Bai, W. J. Yu, Q. W. Li, H. Jin, and S. N. Zhu
Opt. Express 21(7) 7875-7881 (2013)

Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states

Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon
J. Opt. Soc. Am. B 27(10) 2159-2164 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
    [Crossref] [PubMed]
  2. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
    [Crossref] [PubMed]
  3. R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
    [Crossref]
  4. T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
    [Crossref] [PubMed]
  5. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
    [Crossref] [PubMed]
  6. Z. Y. Ou, J.-K. Rhee, and L. J. Wang, “Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion,” Phys. Rev. Lett. 83, 959–962 (1999).
    [Crossref]
  7. Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
    [Crossref] [PubMed]
  8. Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
    [Crossref] [PubMed]
  9. D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
    [Crossref]
  10. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
    [Crossref] [PubMed]
  11. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
    [Crossref] [PubMed]
  12. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express 17, 4670–4676 (2009).
    [Crossref] [PubMed]
  13. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
    [Crossref] [PubMed]
  14. C. Sliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” Phys. Rev. A 67, 030101 (2003).
    [Crossref]
  15. H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
    [Crossref] [PubMed]
  16. C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
    [Crossref]
  17. S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
    [Crossref]
  18. H. Kim, H. S. Park, and S.-K. Choi, “Three-photon N00N states generated by photon subtraction from double photon pairs,” Opt. Express 17, 19720–19726 (2009).
    [Crossref] [PubMed]
  19. J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107, 163602 (2011).
    [Crossref] [PubMed]
  20. Y.-S. Kim, O. Kwon, S. M. Lee, J.-C. Lee, H. Kim, S.-K. Choi, H. S. Park, and Y.-H. Kim, “Observation of Young’s double-slit interference with the three-photon N00N state,” Opt. Express 19, 24957–24966 (2011).
    [Crossref]
  21. H. F. Hofmann, “Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck,” Phys. Rev. A 70, 023812 (2004).
    [Crossref]
  22. F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006).
    [Crossref]
  23. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
    [Crossref]
  24. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004).
    [Crossref] [PubMed]
  25. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
    [Crossref] [PubMed]
  26. M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
    [Crossref] [PubMed]
  27. J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
    [PubMed]
  28. C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
    [Crossref] [PubMed]
  29. N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
    [Crossref] [PubMed]

2014 (3)

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

2013 (3)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

2011 (3)

2010 (2)

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
[Crossref]

2009 (3)

2008 (1)

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

2007 (4)

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref] [PubMed]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

2006 (2)

F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006).
[Crossref]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

2005 (1)

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

2004 (3)

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004).
[Crossref] [PubMed]

H. F. Hofmann, “Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck,” Phys. Rev. A 70, 023812 (2004).
[Crossref]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref] [PubMed]

2003 (1)

C. Sliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” Phys. Rev. A 67, 030101 (2003).
[Crossref]

2001 (1)

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

1999 (1)

Z. Y. Ou, J.-K. Rhee, and L. J. Wang, “Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion,” Phys. Rev. Lett. 83, 959–962 (1999).
[Crossref]

1988 (1)

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

Alley, C. O.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

Almeida, M. P.

Banaszek, K.

C. Sliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” Phys. Rev. A 67, 030101 (2003).
[Crossref]

Bao, X.-H.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Barreiro, J. T.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

Barz, S.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
[Crossref]

Bellini, M.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[Crossref] [PubMed]

Belthangady, C.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

Bonneau, D.

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107, 163602 (2011).
[Crossref] [PubMed]

Broome, M. A.

Buchleitner, A.

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Cable, H.

H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref] [PubMed]

Cemlyn, B.

Chen, K.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Chen, Y.-A.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Cho, Y.-W.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Choi, S.-K.

Clark, A.

Cohen, O.

Cronenberg, G.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
[Crossref]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

Dowling, J. P.

H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref] [PubMed]

Du, S.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

Fedrizzi, A.

Fulconis, J.

Garay-Palmett, K.

Goebel, A.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Goggin, M. E.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

Grangier, P.

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004).
[Crossref] [PubMed]

Guo, G. C.

F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
[Crossref]

Halder, M.

Hamel, D. R.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Harris, S. E.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

Hofmann, H. F.

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

H. F. Hofmann, “Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck,” Phys. Rev. A 70, 023812 (2004).
[Crossref]

Hong, K.-H.

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Hübel, H.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Jennewein, T.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Jeong, Y.-C.

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Kim, H.

Kim, M.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[Crossref] [PubMed]

Kim, M. S.

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Kim, Y.-H.

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Y.-S. Kim, O. Kwon, S. M. Lee, J.-C. Lee, H. Kim, S.-K. Choi, H. S. Park, and Y.-H. Kim, “Observation of Young’s double-slit interference with the three-photon N00N state,” Opt. Express 19, 24957–24966 (2011).
[Crossref]

Kim, Y.-S.

Kolchin, P.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

Kwiat, P. G.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

Kwon, O.

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Y.-S. Kim, O. Kwon, S. M. Lee, J.-C. Lee, H. Kim, S.-K. Choi, H. S. Park, and Y.-H. Kim, “Observation of Young’s double-slit interference with the three-photon N00N state,” Opt. Express 19, 24957–24966 (2011).
[Crossref]

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Y.-S. Kim, O. Kwon, S. M. Lee, J.-C. Lee, H. Kim, S.-K. Choi, H. S. Park, and Y.-H. Kim, “Observation of Young’s double-slit interference with the three-photon N00N state,” Opt. Express 19, 24957–24966 (2011).
[Crossref]

Lee, S. M.

Li, C.-M.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Lim, H.-T.

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Lundeen, J. S.

Marsili, F.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107, 163602 (2011).
[Crossref] [PubMed]

McGuinness, H. J.

McKinstrie, C. J.

Miller, A. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Mintert, F.

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Mirin, R. P.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Mitchell, M. W.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref] [PubMed]

Nagata, T.

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Nam, S. W.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

O’Brien, J. L.

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107, 163602 (2011).
[Crossref] [PubMed]

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Okamoto, R.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref] [PubMed]

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Ono, T.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref] [PubMed]

Ou, Z. Y.

F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006).
[Crossref]

Z. Y. Ou, J.-K. Rhee, and L. J. Wang, “Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion,” Phys. Rev. Lett. 83, 959–962 (1999).
[Crossref]

Pan, J.-W.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Parigi, V.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[Crossref] [PubMed]

Park, H. S.

Park, K.-K.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

Peters, N. A.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

Politi, A.

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107, 163602 (2011).
[Crossref] [PubMed]

Ra, Y.-S.

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Radic, S.

Rangel-Rojo, R.

Rarity, J. G.

Raymer, M. G.

Reingruber, A.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Resch, K. J.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Rhee, J.-K.

Z. Y. Ou, J.-K. Rhee, and L. J. Wang, “Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion,” Phys. Rev. Lett. 83, 959–962 (1999).
[Crossref]

Sasaki, K.

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Shalm, L. K.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Shih, Y. H.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

Shor, P. W.

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

Sliwa, C.

C. Sliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” Phys. Rev. A 67, 030101 (2003).
[Crossref]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

Steinberg, A. M.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref] [PubMed]

Sun, F. W.

F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006).
[Crossref]

Takeuchi, S.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref] [PubMed]

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

Terhal, B. M.

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

Tichy, M. C.

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

Tualle-Brouri, R.

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004).
[Crossref] [PubMed]

U’ren, A. B.

Verma, V. B.

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

Wadsworth, W. J.

Wagenknecht, C.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Walmsley, I. A.

Walther, P.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
[Crossref]

Wang, L. J.

Z. Y. Ou, J.-K. Rhee, and L. J. Wang, “Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion,” Phys. Rev. Lett. 83, 959–962 (1999).
[Crossref]

Wei, T.-C.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

Wenger, J.

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004).
[Crossref] [PubMed]

White, A. G.

Wootters, W. K.

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

Xiong, C.

Yin, G. Y.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

Zavatta, A.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[Crossref] [PubMed]

Zeilinger, A.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
[Crossref]

Zhang, Q.

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

Nat. Commun. (3)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4, 2426 (2013).
[Crossref] [PubMed]

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Observation of detection-dependent multi-photon coherence times,” Nat. Commun. 4, 2451 (2013).
[Crossref] [PubMed]

J.-C. Lee, H.-T. Lim, K.-H. Hong, Y.-C. Jeong, M. S. Kim, and Y.-H. Kim, “Experimental demonstration of delayed-choice decoherence suppression,” Nat. Commun. 5, 4522 (2014).
[PubMed]

Nature (1)

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004).
[Crossref] [PubMed]

Nature Photon. (4)

D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct generation of three-photon polarization entanglement,” Nature Photon. 8, 801–807 (2014).
[Crossref]

C. Wagenknecht, C.-M. Li, A. Reingruber, X.-H. Bao, A. Goebel, Y.-A. Chen, Q. Zhang, K. Chen, and J.-W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photon. 4, 549–552 (2010).
[Crossref]

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photon. 4, 553–556 (2010).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature Photon. 3, 696–705 (2009).
[Crossref]

New J. Phys. (1)

R. Okamoto, H. F. Hofmann, T. Nagata, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers,” New J. Phys. 10, 073033 (2008).
[Crossref]

Opt. Express (5)

Phys. Rev. A (3)

C. Sliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” Phys. Rev. A 67, 030101 (2003).
[Crossref]

H. F. Hofmann, “Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck,” Phys. Rev. A 70, 023812 (2004).
[Crossref]

F. W. Sun, Z. Y. Ou, and G. C. Guo, “Projection measurement of the maximally entangled N-photon state for a demonstration of the N-photon de Broglie wavelength,” Phys. Rev. A 73, 023808 (2006).
[Crossref]

Phys. Rev. Lett. (9)

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004).
[Crossref] [PubMed]

C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett. 87, 077902 (2001).
[Crossref] [PubMed]

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization,” Phys. Rev. Lett. 94, 150502 (2005).
[Crossref] [PubMed]

H. Cable and J. P. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref] [PubMed]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113, 063602 (2014).
[Crossref] [PubMed]

J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien, “Heralding two-photon and four-photon path entanglement on a chip,” Phys. Rev. Lett. 107, 163602 (2011).
[Crossref] [PubMed]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, and S. E. Harris, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97, 113602 (2006).
[Crossref] [PubMed]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988).
[Crossref] [PubMed]

Z. Y. Ou, J.-K. Rhee, and L. J. Wang, “Observation of four-photon interference with a beam splitter by pulsed parametric down-conversion,” Phys. Rev. Lett. 83, 959–962 (1999).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

Y.-S. Ra, M. C. Tichy, H.-T. Lim, O. Kwon, F. Mintert, A. Buchleitner, and Y.-H. Kim, “Nonmonotonic quantum-to-classical transition in multiparticle interference,” Proc. Natl. Acad. Sci. USA 110, 1227–1231 (2013).
[Crossref] [PubMed]

Science (2)

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007).
[Crossref] [PubMed]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup. The photon source produces the four-photon state |2H, 2V〉. PBS the and BS are polarizing and non-polarizing beam splitters, respectively. At the PBS trigger, a set of two quarter-wave plates (QWP) and a half-wave plate (HWP) implements Rz(θ) where θ = 4α +π. If detectors D1 and D2 click simultaneously, the two-photon N00N state |2H, 0V− e2|0H, 2V〉 is heralded with θ set by Rz(θ). At the measurement setup, the heralded N00N state is projected onto the two-photon measurement basis defined by Rz(ϕ) and detectors D3 and D4. The phase-controlled heralding of the entangled state is demonstrated by observing four-fold coincidences as a function of the projection angle ϕ = 4β +π.
Fig. 2
Fig. 2 Projection measurement of the heralded two-photon N00N state |2H, 0V〉 − e2|0H, 2V for different heralding phases θ. The phase shifts observed here clearly demonstrate phase-controlled heralding of the two-photon N00N state. The coincidence counts are accumulated during (a) 4,800 s, (b) 6,900 s, and (c) 6,300 s at each data point. Solid circles are experimental data and solid lines are sinusoidal fittings to the experimental data. The visibility values calculated from the fitting curves are (a) 95.4 ± 1.3%, (b) 91.2 ± 3.4%, and (c) 99.5 ± 0.7%. Error bars represent one standard deviation.
Fig. 3
Fig. 3 Scheme for heralding N-photon N00N states with arbitrary amplitudes and phases. (a) The input state |NH, NV〉, consisting of N horizontally polarized and N vertically polarized photons, is prepared at random times. BS is a non-polarizing beam splitter, which can have arbitrary transmittance. The trigger, performing projection measurement | ψ trig ( N ) ψ trig ( N ) |, heralds the photon-number entangled state |Φ(N)〉 at mode c. (b) Schematic of the trigger. BSm (m = 0 ~ N − 1) is a non-polarizing beam splitter, which branches mode d into N output modes. Rz(θm) introduces phase difference θm between horizontal and vertical polarizations. Pol is a a polarizer oriented at −γ from the horizontal direction and SPD is a single-photon detector. Successful heralding occurs only when all the SPDs click simultaneously. Reflectance of BSm that maximizes the probability of the simultaneous clicks is 1/(m + 1) [21,22].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| Φ = | 2 H , 0 V e 2 i θ | 0 H , 2 V ,
P = 1 2 ( 1 + cos ( 2 ϕ 2 θ ) ) .
| Φ ( N ) c d = k = 0 2 N t 2 N k r k s = max ( 0 , k N ) min ( N , k ) ( N s ) ( N k s ) × | ( N s ) H , ( N k + s ) V c | s H , ( k s ) V d ,
| ψ t r i g ( N ) d = ( cos γ ) N | N H , 0 V d ( e i θ sin γ ) N | 0 H , N V d ,
| Φ ( N ) c = ( sin γ ) N | N H , 0 V c ( e i θ cos γ ) N | 0 H , N V c .
m = 0 N 1 ( cos γ d ^ H e i θ m sin γ d ^ V ) = ( cos γ ) N ( d ^ H ) N ( e i θ sin γ ) N ( d ^ V ) N ,

Metrics