Abstract

We revisit the methodology of rotational Raman temperature measurements covering both lidar and non-range-resolved measurements, e.g., for aircraft control. The results of detailed optimization calculations are presented for the commonly used extraction of signals from the anti-Stokes branch. Different background conditions and realistic shapes of the filter transmission curves are taken into account. Practical uncertainties of the central passbands and widths are discussed. We found a simple parametrization for the optimum filter passband shifts depending on the atmospheric temperature range of interest and the background. The approximation errors of this parametrization are smaller than 2% for temperatures between 200 and 300 K and smaller than 4% between 180 and 200 K.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient

Andreas Behrendt, Takuji Nakamura, Michitaka Onishi, Rudolf Baumgart, and Toshitaka Tsuda
Appl. Opt. 41(36) 7657-7666 (2002)

Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach

David N. Whiteman, Demetrius D. Venable, Monique Walker, Martin Cadirola, Tetsu Sakai, and Igor Veselovskii
Appl. Opt. 52(22) 5376-5384 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, “Measurement of atmospheric temperature profiles by Raman Backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
    [Crossref]
  2. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22(19), 2984–2990 (1983).
    [Crossref] [PubMed]
  3. A. Behrendt, “Temperature Measurements with Lidar” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), Ch. 10.
  4. V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
    [Crossref]
  5. M. Fraczek, A. Behrendt, and N. Schmitt, “Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient,” Appl. Opt. 51(2), 148–166 (2012).
    [Crossref] [PubMed]
  6. M. Fraczek, A. Behrendt, and N. Schmitt, “Short-range optical air data measurements for aircraft control using rotational Raman backscatter,” Opt. Express 21(14), 16398–16414 (2013).
    [Crossref] [PubMed]
  7. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
    [Crossref] [PubMed]
  8. J. Zeyn, W. Lahmann, and C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21(16), 1301–1303 (1996).
    [Crossref] [PubMed]
  9. P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
    [Crossref]
  10. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
    [Crossref]
  11. P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
    [Crossref]
  12. J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
    [Crossref]
  13. J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
    [Crossref]
  14. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
    [Crossref] [PubMed]
  15. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
    [Crossref]
  16. P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).
  17. A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
    [Crossref] [PubMed]
  18. I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
    [Crossref]
  19. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
    [Crossref] [PubMed]
  20. A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
    [Crossref]
  21. Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
    [Crossref]
  22. P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
    [Crossref]
  23. U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
    [Crossref]
  24. A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
    [Crossref]
  25. E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
    [Crossref]
  26. A. Cohen, J. A. Cooney, and K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15(11), 2896–2901 (1976).
    [Crossref] [PubMed]
  27. M. A. Buldakov, I. I. Matrosov, and T. N. Papova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spectrosc. 46, 867–869 (1979).
  28. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32(15), 2758–2764 (1993).
    [Crossref] [PubMed]
  29. A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
    [Crossref]
  30. M. Radlach, “A scanning eye-safe rotational Raman lidar in the ultraviolet for measurements of tropospheric temperature fields,” doctoral thesis, Stuttgart (2009).
  31. F. Liu and F. Yi, “Lidar-measured atmospheric N2 vibrational rotational Raman spectra and consequent temperature retrieval,” Opt. Express 22(23), 27833 (2014).
    [Crossref]
  32. M. Fraczek, “Aircraft air data system based on the measurement of Raman and elastic backscatter via active optical remote-sensing,” doctoral thesis, University of Hohenheim, http://opus.uni-hohenheim.de/volltexte/2014/965/ (2013).

2015 (3)

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

2014 (1)

2013 (3)

M. Fraczek, A. Behrendt, and N. Schmitt, “Short-range optical air data measurements for aircraft control using rotational Raman backscatter,” Opt. Express 21(14), 16398–16414 (2013).
[Crossref] [PubMed]

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

2012 (1)

2011 (4)

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

2009 (3)

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

2008 (1)

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

2005 (1)

2004 (4)

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

2002 (1)

2000 (1)

1996 (1)

1993 (1)

1983 (1)

1979 (1)

M. A. Buldakov, I. I. Matrosov, and T. N. Papova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spectrosc. 46, 867–869 (1979).

1976 (1)

1972 (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman Backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
[Crossref]

Achtert, P.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).

Alpers, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Althausen, D.

Ansmann, A.

Aoshima, F.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Arshinov, Y.

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
[Crossref] [PubMed]

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Arshinov, Y. F.

Balin, I.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Barthlott, C.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Baumgart, R.

Behrendt, A.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

M. Fraczek, A. Behrendt, and N. Schmitt, “Short-range optical air data measurements for aircraft control using rotational Raman backscatter,” Opt. Express 21(14), 16398–16414 (2013).
[Crossref] [PubMed]

M. Fraczek, A. Behrendt, and N. Schmitt, “Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient,” Appl. Opt. 51(2), 148–166 (2012).
[Crossref] [PubMed]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
[Crossref] [PubMed]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

Bender, M.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Blyth, A.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Bobrovnikov, S.

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
[Crossref] [PubMed]

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Bobrovnikov, S. M.

Buldakov, M. A.

M. A. Buldakov, I. I. Matrosov, and T. N. Papova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spectrosc. 46, 867–869 (1979).

Cadeddu, M.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Calpini, B.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Cohen, A.

Cooney, J.

J. Cooney, “Measurement of atmospheric temperature profiles by Raman Backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
[Crossref]

Cooney, J. A.

Corsmeier, U.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Cuesta, J.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Demoz, B. B.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Di Girolamo, P.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Dick, G.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Dorninger, M.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

Eixmann, R.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Ferretti, R.

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

Flamant, C.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Fraczek, M.

Fricke-Begemann, C.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Gao, F.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

Geller, K. N.

Gerding, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Gorgas, T.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Groenemeijer, P.

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Gumbel, J.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).

Hammann, E.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

Handwerker, J.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Hardesty, M.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Höffner, J.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Hua, D.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

Huang, Y.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Kalthoff, N.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

Khaplanov, M.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).

Khodayar, S.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Khosrawi, F.

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).

Kohler, M.

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Kottmeier, C.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Lahmann, W.

Lammel, G.

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

Le Mounier, F.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

Leavor, K.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Lee, R.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Lei, L.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Liu, F.

Liu, Z.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Mahlke, H.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Mannstein, H.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Mao, J.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

Marchese, R.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Matrosov, I. I.

M. A. Buldakov, I. I. Matrosov, and T. N. Papova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spectrosc. 46, 867–869 (1979).

Mattis, I.

McCormick, M.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Mitev, V.

Mitev, V. M.

Mobbs, S. D.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

Müller, D.

Muppa, S. K.

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

Nakamura, T.

Norton, E. G.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

Onishi, M.

Pal, S.

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Papova, T. N.

M. A. Buldakov, I. I. Matrosov, and T. N. Papova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spectrosc. 46, 867–869 (1979).

Pepler, S. J.

Radlach, M.

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Reichardt, J.

Schlüssel, P.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Schmitt, N.

Serikov, I.

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
[Crossref] [PubMed]

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Simeonov, V.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Su, J.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Summa, D.

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

Thomas, L.

Träumner, K.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Trentmann, J.

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Tsuda, T.

Turner, D. D.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Valdebenito, Á. M.

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

Valdebenito B, Á. M.

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

van Baelen, J.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Van den Bergh, H.

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Vaughan, G.

Wandinger, U.

Wang, L.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

Wang, Y.

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

Wareing, D. P.

Weitkamp, C.

Whiteman, D. N.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Wickert, J.

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

Wieser, A.

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Wu, Y.

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Wulfmeyer, V.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Yi, F.

Zeyn, J.

Zuev, V. E.

Zus, F.

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Appl. Opt. (8)

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22(19), 2984–2990 (1983).
[Crossref] [PubMed]

M. Fraczek, A. Behrendt, and N. Schmitt, “Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient,” Appl. Opt. 51(2), 148–166 (2012).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
[Crossref] [PubMed]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
[Crossref] [PubMed]

A. Cohen, J. A. Cooney, and K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15(11), 2896–2901 (1976).
[Crossref] [PubMed]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32(15), 2758–2764 (1993).
[Crossref] [PubMed]

Appl. Phys. B (1)

I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar,” Appl. Phys. B 79(6), 775–782 (2004).
[Crossref]

Atmos. Chem. Phys. (4)

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

A. Behrendt, V. Wulfmeyer, E. Hammann, S. K. Muppa, and S. Pal, “Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar,” Atmos. Chem. Phys. 15(10), 5485–5500 (2015).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

Atmos. Environ. (2)

A. Behrendt, S. Pal, V. Wulfmeyer, Á. M. Valdebenito, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources, Part I: measurement of particle backscatter coefficient maps with a scanning UV lidar,” Atmos. Environ. 45(16), 2795–2802 (2011).
[Crossref]

Á. M. Valdebenito B, S. Pal, A. Behrendt, V. Wulfmeyer, and G. Lammel, “A novel approach for the characterisation of transport and optical properties of aerosol particles near sources: microphysics-chemistry-transport model development and application,” Atmos. Environ. 45(17), 2981–2990 (2011).
[Crossref]

Atmos. Meas. Tech. (1)

P. Achtert, M. Khaplanov, F. Khosrawi, and J. Gumbel, “Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere,” Atmos. Meas. Tech. 6, 91–98 (2013).

Geophys. Res. Lett. (1)

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

J. Appl. Meteorol. (1)

J. Cooney, “Measurement of atmospheric temperature profiles by Raman Backscatter,” J. Appl. Meteorol. 11(1), 108–112 (1972).
[Crossref]

J. Atmos. Ocean. Technol. (1)

P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event,” J. Atmos. Ocean. Technol. 26(9), 1742–1762 (2009).
[Crossref]

J. Quantum Spectrosc. Ra. (1)

J. Su, M. McCormick, Y. Wu, R. Lee, L. Lei, Z. Liu, and K. Leavor, “Cloud temperature measurement using rotational Raman lidar,” J. Quantum Spectrosc. Ra. 125, 45–50 (2013).
[Crossref]

Mon. Weather Rev. (1)

P. Groenemeijer, C. Barthlott, A. Behrendt, U. Corsmeier, J. Handwerker, M. Kohler, C. Kottmeier, H. Mahlke, S. Pal, M. Radlach, J. Trentmann, A. Wieser, and V. Wulfmeyer, “Multi-sensor measurements of a convective storm cluster over a low mountain range: adaptive observations during PRINCE,” Mon. Weather Rev. 137, 585–602 (2009).
[Crossref]

Opt. Commun. (1)

J. Mao, D. Hua, Y. Wang, F. Gao, and L. Wang, “Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar,” Opt. Commun. 282(15), 3113–3118 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (1)

M. A. Buldakov, I. I. Matrosov, and T. N. Papova, “Determination of the anisotropy of the polarisability tensor for N2 and O2 molecules,” Opt. Spectrosc. 46, 867–869 (1979).

Q. J. R. Meteorol. Soc. (2)

U. Corsmeier, N. Kalthoff, C. Barthlott, F. Aoshima, A. Behrendt, P. Di Girolamo, M. Dorninger, J. Handwerker, C. Kottmeier, H. Mahlke, S. D. Mobbs, E. G. Norton, J. Wickert, and V. Wulfmeyer, “Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c,” Q. J. R. Meteorol. Soc. 137(S1), 137–155 (2011).
[Crossref]

A. Behrendt, S. Pal, F. Aoshima, M. Bender, A. Blyth, U. Corsmeier, J. Cuesta, G. Dick, M. Dorninger, C. Flamant, P. Di Girolamo, T. Gorgas, Y. Huang, N. Kalthoff, S. Khodayar, H. Mannstein, K. Träumner, A. Wieser, and V. Wulfmeyer, “Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b,” Q. J. R. Meteorol. Soc. 137(S1), 81–100 (2011).
[Crossref]

Rev. Geophys. (1)

V. Wulfmeyer, M. Hardesty, D. D. Turner, A. Behrendt, M. Cadeddu, P. Di Girolamo, P. Schlüssel, J. van Baelen, and F. Zus, “A Review of the Remote Sensing of Lower-Tropospheric Thermodynamic Profiles and its Indispensable Role for the Understanding and the Simulation of Water and Energy Cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Other (3)

A. Behrendt, “Temperature Measurements with Lidar” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005), Ch. 10.

M. Radlach, “A scanning eye-safe rotational Raman lidar in the ultraviolet for measurements of tropospheric temperature fields,” doctoral thesis, Stuttgart (2009).

M. Fraczek, “Aircraft air data system based on the measurement of Raman and elastic backscatter via active optical remote-sensing,” doctoral thesis, University of Hohenheim, http://opus.uni-hohenheim.de/volltexte/2014/965/ (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Shift of pure rotational Raman lines of nitrogen and oxygen relative to the excitation frequency ν0 and relative intensities of these lines for temperatures of 180 and 300 K.
Fig. 2
Fig. 2 Temperature sensitivity dP/dT of the extracted rotational Raman signals depending on the wavenumber shift of the center of the filter passband and its bandwidth. Only values for which the excitation frequency is outside of the transmission band are shown.
Fig. 3
Fig. 3 Background-level S for the two rotational Raman signals RR1 and RR2 at different times of the day (local noon is at 11:40 UTC). The profiles were measured on May 19, 2013 under cloud-free conditions. Total incoming short wave radiation measured by a nearby EC station was 0 W/m2 at 0 UTC, 128 W/m2 at 5 UTC and 890 W/m2 at 11 UTC.
Fig. 4
Fig. 4 Example for the simulated temperature measurement uncertainties drT (relative to the minimum uncertainty of the array shown in black) depending on SPC1 and SPC2, respectively. This case is for a temperature of 270 K and zero background (S = 0). The star denotes the largest possible value for SPC1 for which drT ≤ 1.2; this point is of practical importance as it marks a setting at which the required blocking of the elastically scattered light at the excitation frequency can be reached.
Fig. 5
Fig. 5 Spheres mark pairs SPC1 and SPC2 for which the relative temperature measurement uncertainty drT = 1.2. These simulation results are for zero background (S = 0). It is interesting to note that the range of both SPC1 and SPC2 for drT ≤ 1.2 increases with increasing temperature. Furthermore, theses ranges shift to larger values. Gray areas mark the projections of the data points to the parameter planes.
Fig. 6
Fig. 6 (a) Minimum values of drT for a combination of SPC1 and temperature T for all values of SPC2 for zero background (S = 0). (b) Same as (a) but for pairs of SPC2 and T for all values of SPC1. The need of taking the temperature measurement range of interest into account for the filter selection becomes evident.
Fig. 7
Fig. 7 SPC1 and SPC2 from the excitation wavenumber for drT = 1.2 (marked with the star in Fig. 4 for T = 270 K and S = 0). Points are results of the simulation; thin lines show the best linear fit for each case. These data form the input for the suggested parametrization (see Table 3). Error bars show the uncertainties due to the discretization steps used for SPC1 and SPC2.
Fig. 8
Fig. 8 (a) drSPCS, 240K for SPC1 and SPC2 with S = 0 and S = 1 respectively (see Eq. (15)).(b) Same as (a), but at same temperatures and relative to zero background (S = 0).
Fig. 9
Fig. 9 Filter transmission curves used in the simulation to study the effect of their shape on the optimum filter setting. SFT1 is a Gaussion (see Eq. (12)). SFT2 has the same width as SFT1 but a slightly narrower peak and broader tails. SFT3 and SFT4 are for the same filter as SFT1 but with smaller and higher beam divergence in the receiver, respectively.
Fig. 10
Fig. 10 (a) Relative change drSPCS,T,SFT1 of selected SPC1s shown in Fig. 7a if the SFT2 to SFT4 are used instead of SFT1. (b) Same as (a) but for SPC2 and Fig. 7b.
Fig. 11
Fig. 11 Mean y-intercept bSPCx of the suggested linear parametrization for SPC1 and SPC2, respectively, versus background parameter S.
Fig. 12
Fig. 12 Performance of the suggested parametrization. (a) Relative fit errors (RFE) for SPC1 for temperatures between 180 and 300 K and background parameters S from 0 to 1. (b) Same as (a) but for SPC2. All deviations are smaller than 2% with the exception of temperatures lower than 200 K for which they are smaller than 4%.

Tables (3)

Tables Icon

Table 1 Values used for the constants in Eqs. (1)-(4)

Tables Icon

Table 2 Wavenumber ranges covered by our simulations with corresponding wavelength ranges for the second to fourth harmonic of a Nd:YAG laser. SPC1 and SPC2 are the shifts of the passband centers of the filters for the low-J and high-J rotational Raman channel, respectively, relative to the frequency of the initial radiation.

Tables Icon

Table 3 Parameters for the suggested parametrization which determines the optimum filter central passbands depending on background S, for drT = 1.0 and drT = 1.2. mSPCx: Slope of the linear fit, bSPCx: y-intercept of the linear fit.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E rot,i (J)=[ B 0,i J(J+1) D 0,i J 2 (J+1) 2 ]hc,J=0,1,2,
Δ ν St,i (J)= B 0,i 2(2J+3)+ D 0,i [ 3(2J+3)+ (2J+3) 3 ],J=0,1,2,.
Δ ν ASt,i (J)= B 0,i 2(2J1)+ D 0,i [ 3(2J1)+ (2J1) 3 ],J=2,3,4,.
( dσ dΩ ) π RR,i (J,T)= 112 π 4 15 g i (J)hc B 0,i ( ν 0 +Δ ν i (J)) 4 γ i 2 (2 I i +1) 2 kT X(J)exp( E rot,i (J) kT )
X(J)= (J+1)(J+2) 2J+3 ,J=0,1,2,
X(J)= J(J1) 2J1 ,J=2,3,4,.
P λR (z)= P o cΔt 2 O(z) z 2 η λR A T β λR (z)exp[ 0 z [ α o (z')+ α R (z') ]dz' ].
Q(T)= P RR2 P RR1 = O 2 N 2 J i τ RR2 ( J i ) η i ( dσ dΩ ) π RR,i ( J i ) O 2 N 2 J i τ RR1 (J i ) η i ( dσ dΩ ) π RR,i ( J i )
Δ T stat = dT dQ ΔQ= dT dQ P RR1 + P B1 P RR1 2 + P RR2 + P B2 P RR2 2
dT dQ = T 1 T 2 Q 1 Q 2 .
dP dT P( T 2 )P( T 1 ) T 2 T 1
F(ν)=Aexp[ B (ν ν 0 ) 4 FWHM ]
P B =S(z) Δ ν FWHM 8 cm 1 P J max (z)
S = E pulse E pulse S
d r SP C S,240K (T)= SPC(S=0,T)SPC(S=0,240K) SPC(S=0,240K)
d r SP C S=0,T (T)= SPC(S,T)SPC(S=0,T) SPC(S=0,T)
d r SP C S,T,SFT1 (T,S)= SPC(S,T,SFT)SPC(S,T,SFT1) SPC(S,T,SFT1)
SPCx(T,S)= m SPCx T+ b SPCx (S) with x= 1,2
b SPC1 (S)=5.52 cm 1 exp( S 0.25 )+19.59 cm 1
b SPC2 (S)=28.20 cm 1 exp( S 0.36 )+41.28 cm 1
SPC1(T,S)=0.120 cm 1 K T+5.52 cm 1 exp( S 0.25 )+19.59 cm 1
SPC2(T,S)=0.238 cm 1 K T+8.20 cm 1 exp( S 0.36 )+41.28 cm 1 .
RFE= SP C Fit SP C Sim SP C Sim .
P = B η λR A det Ψ ω rec λ RR
Ψ=S P 0 8 cm 1 cΔt 2 β λJmax exp[ 0 z ( α λ 0 (z')+ α R (z'))dz' ]
P RR (532nm,J)=0.6 ( τ(532nm)(z) τ(355nm)(z) ) 2 P RR (355nm,J)
S =S 200mJ E 0x P RR (x) P RR (355nm) 250mW Ψ x

Metrics