Abstract

The fact that surface-induced damping rate of surface plasmon polaritons (SPPs) in metal nanoparticles increases with the decrease of particle size is well known. We show that this rate also increases with the degree of the mode confinement, hence damping of the higher order nonradiative SPP modes in spherical particles is greatly enhanced relative to damping of the fundamental (dipole) SPP mode. Since higher order modes are the ones responsible for quenching of luminescence in the vicinity of metal surfaces, the degree of quenching increases resulting in a substantial decrease in the amount of attainable enhancement of the luminescence.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays

G. Sun, J. B. Khurgin, and R. A. Soref
J. Opt. Soc. Am. B 25(10) 1748-1755 (2008)

Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles

Ming-Yaw Ng and Wei-Chih Liu
Opt. Express 17(7) 5867-5878 (2009)

Enhanced upconversion quantum yield near spherical gold nanoparticles – a comprehensive simulation based analysis

Stefan Fischer, Deepu Kumar, Florian Hallermann, Gero von Plessen, and Jan Christoph Goldschmidt
Opt. Express 24(6) A460-A475 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [Crossref]
  5. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  6. L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
    [Crossref]
  7. S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
    [Crossref]
  8. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref] [PubMed]
  9. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
    [Crossref] [PubMed]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  11. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
    [Crossref]
  12. Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
    [Crossref] [PubMed]
  13. E. C. Le Ru and P. G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
  14. M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
    [Crossref]
  15. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
    [Crossref]
  16. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
    [Crossref]
  17. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
    [Crossref] [PubMed]
  18. G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
    [Crossref]
  19. F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
    [Crossref] [PubMed]
  20. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
    [Crossref] [PubMed]
  21. G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett. 37(9), 1583–1585 (2012).
    [Crossref] [PubMed]
  22. G. Sun and J. B. Khurgin, “Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons,” Phys. Rev. A 85(6), 063410 (2012).
    [Crossref]
  23. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  24. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  25. A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
    [Crossref]
  26. C. Yannouleas and R. A. Broglia, “Landau damping and wall dissipation in large metal clusters,” Ann. Phys. 217(1), 105–141 (1992).
    [Crossref]
  27. R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65(15), 155427 (2002).
    [Crossref]
  28. Z. Yuan and S. Gao, “Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model,” Surf. Sci. 602(2), 460–464 (2008).
    [Crossref]
  29. F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
    [Crossref]
  30. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
    [Crossref] [PubMed]
  31. J. Lindhard, “On the properties of a gas of charged particles,” Mat. Fys. Medd. Dan. Vid. 28, 1–57 (1954).
  32. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
    [Crossref] [PubMed]
  33. T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
    [Crossref] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  35. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  36. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
    [Crossref] [PubMed]
  37. S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
    [Crossref] [PubMed]
  38. A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
    [Crossref] [PubMed]

2015 (2)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

2014 (5)

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
[Crossref]

2012 (3)

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett. 37(9), 1583–1585 (2012).
[Crossref] [PubMed]

G. Sun and J. B. Khurgin, “Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons,” Phys. Rev. A 85(6), 063410 (2012).
[Crossref]

2011 (1)

2009 (3)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[Crossref]

2008 (5)

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Z. Yuan and S. Gao, “Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model,” Surf. Sci. 602(2), 460–464 (2008).
[Crossref]

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
[Crossref]

2007 (3)

2006 (2)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

2005 (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

2003 (2)

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (2)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65(15), 155427 (2002).
[Crossref]

1999 (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1996 (1)

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
[Crossref]

1992 (1)

C. Yannouleas and R. A. Broglia, “Landau damping and wall dissipation in large metal clusters,” Ann. Phys. 217(1), 105–141 (1992).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1954 (1)

J. Lindhard, “On the properties of a gas of charged particles,” Mat. Fys. Medd. Dan. Vid. 28, 1–57 (1954).

Agio, M.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

Asger Mortensen, N.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

Bakker, M.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bharadwaj, P.

Boltasseva, A.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Bozhevolnyi, S. I.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Bravo-Abad, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Broglia, R. A.

C. Yannouleas and R. A. Broglia, “Landau damping and wall dissipation in large metal clusters,” Ann. Phys. 217(1), 105–141 (1992).
[Crossref]

Brus, L. E.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Chen, J.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Christensen, T.

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Delga, A.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ditlbacher, H.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Dorfmüller, J.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Drachev, V. P.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Du, H.

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Feist, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Gao, S.

Z. Yuan and S. Gao, “Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model,” Surf. Sci. 602(2), 460–464 (2008).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
[Crossref]

Garcia-Vidal, F. J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Giannini, V.

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Gómez Rivas, J.

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Hofer, F.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hohenau, A.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hohenester, U.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Holmgaard, T.

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Irudayaraj, J.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Jalabert, R. A.

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65(15), 155427 (2002).
[Crossref]

Jauho, A. P.

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Kadkhodazadeh, S.

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Kern, K.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

G. Sun and J. B. Khurgin, “Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons,” Phys. Rev. A 85(6), 063410 (2012).
[Crossref]

G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett. 37(9), 1583–1585 (2012).
[Crossref] [PubMed]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Kildishev, A. V.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Krauss, T. D.

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

Krenn, J. R.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Lindhard, J.

J. Lindhard, “On the properties of a gas of charged particles,” Mat. Fys. Medd. Dan. Vid. 28, 1–57 (1954).

Liu, Z.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Michaels, A. M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

Molina, R. A.

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65(15), 155427 (2002).
[Crossref]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Mori, G.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Mortensen, N. A.

A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
[Crossref]

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Muskens, O. L.

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
[Crossref]

O’Reilly, E. P.

A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Pan, S.

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

Pedersen, K.

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Pedersen, R. H.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Pors, A.

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Protsenko, I. E.

A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
[Crossref]

Raza, S.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Rockstuhl, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Rothberg, L. J.

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

Sandoghdar, V.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Schmidt, F.-P.

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Shalaev, V. M.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Søndergaard, T.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Stenger, N.

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Stockman, M. I.

Sun, G.

G. Sun, J. B. Khurgin, and D. P. Tsai, “Comparative analysis of photoluminescence and Raman enhancement by metal nanoparticles,” Opt. Lett. 37(9), 1583–1585 (2012).
[Crossref] [PubMed]

G. Sun and J. B. Khurgin, “Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons,” Phys. Rev. A 85(6), 063410 (2012).
[Crossref]

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Tsai, D. P.

Uskov, A. V.

A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
[Crossref]

van Veggel, F. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Wagner, J. B.

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

Weinmann, D.

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65(15), 155427 (2002).
[Crossref]

Wubs, M.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Yan, W.

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

Yang, C. C.

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[Crossref]

Yannouleas, C.

C. Yannouleas and R. A. Broglia, “Landau damping and wall dissipation in large metal clusters,” Ann. Phys. 217(1), 105–141 (1992).
[Crossref]

Yuan, H.-K.

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Yuan, Z.

Z. Yuan and S. Gao, “Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model,” Surf. Sci. 602(2), 460–464 (2008).
[Crossref]

ACS Nano (2)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

T. Christensen, W. Yan, S. Raza, A. P. Jauho, N. A. Mortensen, and M. Wubs, “Nonlocal response of metallic nanospheres probed by light, electrons, and atoms,” ACS Nano 8(2), 1745–1758 (2014).
[Crossref] [PubMed]

Ann. Phys. (1)

C. Yannouleas and R. A. Broglia, “Landau damping and wall dissipation in large metal clusters,” Ann. Phys. 217(1), 105–141 (1992).
[Crossref]

Appl. Phys. Lett. (4)

G. Sun, J. B. Khurgin, and C. C. Yang, “Impact of high-order surface Plasmon modes of metal nanoparticles on enhancement of optical emission,” Appl. Phys. Lett. 95(17), 171103 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

L. Novotny, “Single molecule fluorescence in inhomogeneous environments,” Appl. Phys. Lett. 69(25), 3806 (1996).
[Crossref]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

J. Phys. Chem. C (1)

F. J. García de Abajo, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112(46), 17983–17987 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

Mat. Fys. Medd. Dan. Vid. (1)

J. Lindhard, “On the properties of a gas of charged particles,” Mat. Fys. Medd. Dan. Vid. 28, 1–57 (1954).

Mol. Phys. (1)

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

Nano Lett. (3)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[Crossref] [PubMed]

Nat. Commun. (2)

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wagner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen, “Extremely confined gap surface-plasmon modes excited by electrons,” Nat. Commun. 5, 4125 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” New J. Phys. 10(12), 125022 (2008).
[Crossref]

Opt. Commun. (1)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261(2), 368–375 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

G. Sun and J. B. Khurgin, “Origin of giant difference between fluorescence, resonance, and nonresonance Raman scattering enhancement by surface plasmons,” Phys. Rev. A 85(6), 063410 (2012).
[Crossref]

Phys. Rev. B (2)

R. A. Molina, D. Weinmann, and R. A. Jalabert, “Oscillatory size dependence of the surface plasmon linewidth in metallic nanoparticles,” Phys. Rev. B 65(15), 155427 (2002).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[Crossref] [PubMed]

Plasmonics (1)

A. V. Uskov, I. E. Protsenko, N. A. Mortensen, and E. P. O’Reilly, “Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration,” Plasmonics 9(1), 185–192 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Wang, S. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, “The structural basis for giant enhancement enabling single-molecule Raman scattering,” Proc. Natl. Acad. Sci. U.S.A. 100(15), 8638–8643 (2003).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Surf. Sci. (1)

Z. Yuan and S. Gao, “Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model,” Surf. Sci. 602(2), 460–464 (2008).
[Crossref]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

E. C. Le Ru and P. G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Geometry of luminesce enhancement by a spherical metal nanoparticle of radius a separated from the emitter by distanced. (b) Radial electric field of SPP modes of different order l=1,2,5,10,15 vs. distance from the center of nanoparticle of radius a=10 nm. (c) Excitation spectra of those SPP modes for Ag nanoparticle of radius a=10 nm without taking surface collision damping γ s into account. (d) Same as (c) but with surface collision damping taken into account.
Fig. 2
Fig. 2 (a) Power spectrum of the l-th order SPP mode. The fraction of energy with wave vector larger than ω/ v F get absorbed by the metal (Landau damped). (b) Calculated values of damping coefficient A (l) for SPP modes from l=1 to l=15 . Linear fit A (l) =l is shown by the dashed line.
Fig. 3
Fig. 3 Quenching ratios as a function of distance d between the emitter and metal nanosphere of radius a=5 nm with SPP mode damping rate taking into account bulk nonradiative or surface collision damping or both combined for (a) Au and (b) Ag.
Fig. 4
Fig. 4 Optimized enhancement, nano-sphere radius a opt , and molecule-sphere separation d opt over a range of original radiative efficiency for Au (a), (c), (e) and Ag (b), (d), (f), respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E l ={ E max,l ( r a ) l1 [ l l+1 P l (cosθ) r ^ 1 sinθ [ P l+1 (cosθ)cosθ P l (cosθ)] θ ^ ] r<a E max,l ( a r ) l1 [ P l (cosθ) r ^ 1 sinθ [ P l+1 (cosθ)cosθ P l (cosθ)] θ ^ ] r>a
w eff,l = (ar) E l 2 (r) r 2 r = a l+1
ε(ω,k)= ε b + 3 ω p 2 k 2 v F 2 [ 1 ω 2k v F ln ω+k v F ωk v F ]
ε i,s (l) = 3π ω p 2 ω 2 v F 3 [ f x + f y + f z ]
f x = k x >ω/ v F | E l,x ( k x , k y , k z ) | 2 k x 3 d k x d k y d k z
A x (l) (p)= 3 2 π p 4 p | E x (l) ( q x ) | 2 q x 3 d q x
F P (l) = 3π ε d ( l+1 ) 2 ω em L l ( ω em ) 4 ( c ε d 1/2 ω em a ) 3 ( a a+d ) 2l+4 ,
F= 1+ F P (1) η pr 1+ F P (1) (1+ f q ) η rad

Metrics