Abstract

This paper describes the luminance uniformity of OLED lighting panels depending on OLED device structures of single emission layer (single-EML), 2-tandem, and 3-tandem. The luminance distribution is evaluated through the circuit simulation and the fabricated panel measurement. In the simulation results with yellow-green color panels of 30 × 80 mm2 emission area, a 3-tandem structure shows the lowest non-uniformity (1.34% at 7.5V), compared to single-EML (5.67% at 2.8V) and 2-tandem (2.78% at 5.3 V) structures at 1,000 cd/m2. The luminance non-uniformity is germane to the OLED conductance showing that the high luminance-current efficiency is of the most importance to achieve the uniform voltage and luminance distribution. In measurement, a 3-tandem structure also achieves the most uniform luminance distribution with non-uniformity of 4.1% while single EML and 2-tandem structures accomplish 9.6%, and 6.4%, respectively, at ~1,000 cd/m2. In addition, the simulation results ensure that a 3-tandem structure panel is allowed to be enlarged the panel size up to about 5,000 mm2 for lower luminance non-uniformity than 10% without any auxiliary metal electrodes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Color-tunable stacked organic light-emitting diode with semi-transparent metal electrode

Seok-Hwan Chung and Hee Yeon Noh
Opt. Mater. Express 6(9) 2834-2840 (2016)

Color-tunable organic light-emitting diodes with vertically stacked blue, green, and red colors for lighting and display applications

Hyunkoo Lee, Hyunsu Cho, Chun-Won Byun, Jun-Han Han, Byoung-Hwa Kwon, Sukyung Choi, Jonghee Lee, and Nam Sung Cho
Opt. Express 26(14) 18351-18361 (2018)

Design and fabrication of two-stack tandem-type all-phosphorescent white organic light-emitting diode for achieving high color rendering index and luminous efficacy

Hyunsu Cho, Chul Woong Joo, Jonghee Lee, Hyunkoo Lee, Jaehyun Moon, Jeong-Ik Lee, Jun Yeob Lee, Youngjin Kang, and Nam Sung Cho
Opt. Express 24(21) 24161-24168 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
    [Crossref]
  2. J. P. Spindler and T. K. Hatwar, “Fluirescent-based tandem white OLEDs designed for display and solid-state-lighting applications,” Soc. Inform. Display 17(10), 861 (2009).
    [Crossref]
  3. T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
    [Crossref]
  4. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
    [Crossref] [PubMed]
  5. A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
    [Crossref]
  6. L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
    [Crossref]
  7. G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
    [Crossref]
  8. B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16, 18 (2004).
  9. M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
    [Crossref] [PubMed]
  10. K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).
  11. K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
    [Crossref]
  12. R. Ma, P. A. Levermore, H. Pang, P. Mandlik, K. Rajan, J. Silvernail, M. Hack, and J. J. Brown, “66.4: invited paper: challenges and opportunities in scaling up OLED lighting devices,” SID Symp. Dig. Tech. Papers 42, 983 (2011).
    [Crossref]
  13. J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26(3), 034002 (2011).
    [Crossref]
  14. J. Park, J. Lee, and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Org. Electron. 13(1), 184–194 (2012).
    [Crossref]
  15. K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
    [Crossref]
  16. M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
    [Crossref]
  17. M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
    [Crossref]
  18. L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
    [Crossref]
  19. Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
    [Crossref]
  20. L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
    [Crossref]

2015 (1)

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

2014 (1)

L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
[Crossref]

2013 (3)

Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
[Crossref]

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

2012 (2)

J. Park, J. Lee, and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Org. Electron. 13(1), 184–194 (2012).
[Crossref]

L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
[Crossref]

2011 (4)

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26(3), 034002 (2011).
[Crossref]

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

2009 (2)

J. P. Spindler and T. K. Hatwar, “Fluirescent-based tandem white OLEDs designed for display and solid-state-lighting applications,” Soc. Inform. Display 17(10), 861 (2009).
[Crossref]

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

2008 (1)

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

2006 (1)

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

2004 (1)

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16, 18 (2004).

2003 (1)

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

1997 (1)

1996 (1)

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

Bässler, H.

L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
[Crossref]

Beeckman, J.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

Bertram, D.

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

Brown, J. J.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Bulovic, V.

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

Burrows, P. E.

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[Crossref] [PubMed]

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

Chu, X.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Chwang, A. B.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

D’Andrade, B. W.

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16, 18 (2004).

Dong, G.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Duan, L.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Elschner, A.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Fehse, K.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Forrest, S. R.

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16, 18 (2004).

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[Crossref] [PubMed]

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

Gather, M. C.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Gu, G.

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[Crossref] [PubMed]

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

Hack, M.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Hatwar, T. K.

J. P. Spindler and T. K. Hatwar, “Fluirescent-based tandem white OLEDs designed for display and solid-state-lighting applications,” Soc. Inform. Display 17(10), 861 (2009).
[Crossref]

Heuken, M.

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

Hewitt, R. H.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Huang, Q.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Ide, N.

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Kalisch, H.

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

Kittichungchit, V.

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

Kohári, Z.

Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
[Crossref]

L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
[Crossref]

Köhnen, A.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Kollá, E.

Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
[Crossref]

L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
[Crossref]

Komoda, T.

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Krajewski, T.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Lee, J.

J. Park, J. Lee, and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Org. Electron. 13(1), 184–194 (2012).
[Crossref]

Leo, K.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Li, L.

L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
[Crossref]

Liu, M.

L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
[Crossref]

Liu, S.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Lövenich, W.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Lu, N.

L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
[Crossref]

Mao, S. Y.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Marescaux, M.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Matsuhisa, Y.

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Meerholz, K.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Mladenovski, S.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

Moro, L.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Neyts, K.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Nieto, A. U.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Noh, Y. Y.

J. Park, J. Lee, and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Org. Electron. 13(1), 184–194 (2012).
[Crossref]

Ota, M.

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

Park, J.

J. Park, J. Lee, and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Org. Electron. 13(1), 184–194 (2012).
[Crossref]

Park, J. W.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26(3), 034002 (2011).
[Crossref]

Park, S. H.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26(3), 034002 (2011).
[Crossref]

Pohl, L.

Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
[Crossref]

L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
[Crossref]

Poppe, A.

Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
[Crossref]

L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
[Crossref]

Qiao, J.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Qiu, Y.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Rajan, K.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Real, A.

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

Rothman, M. A.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Rutherford, N.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Shin, D. C.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26(3), 034002 (2011).
[Crossref]

Silvernail, J. A.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Slawinski, M.

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

Spindler, J. P.

J. P. Spindler and T. K. Hatwar, “Fluirescent-based tandem white OLEDs designed for display and solid-state-lighting applications,” Soc. Inform. Display 17(10), 861 (2009).
[Crossref]

Thompson, M. E.

G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices,” Opt. Lett. 22(3), 172–174 (1997).
[Crossref] [PubMed]

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

Tsuji, H.

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Varutt, K.

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Venkatesh, S.

Vescan, A.

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

Walzer, K.

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

Wang, L.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Weaver, M. S.

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

Weingarten, M.

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

Yamae, K.

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Zhang, D.

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

Adv. Mater. (2)

B. W. D’Andrade and S. R. Forrest, “White organic light-emitting devices for solid-state lighting,” Adv. Mater. 16, 18 (2004).

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23(2), 233–248 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. B. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hack, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays,” Appl. Phys. Lett. 83(3), 413 (2003).
[Crossref]

G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Appl. Phys. Lett. 68(19), 2606 (1996).
[Crossref]

J. Appl. Phys. (2)

K. Neyts, M. Marescaux, A. U. Nieto, A. Elschner, W. Lövenich, K. Fehse, Q. Huang, K. Walzer, and K. Leo, “Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity,” J. Appl. Phys. 100(11), 114513 (2006).
[Crossref]

K. Neyts, A. Real, M. Marescaux, S. Mladenovski, and J. Beeckman, “Conductor grid optimization for luminance loss reduction in organic light emitting diodes,” J. Appl. Phys. 103(9), 093113 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. Duan, S. Liu, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode,” J. Phys. D Appl. Phys. 42(7), 075103 (2009).
[Crossref]

J. SID (1)

K. Yamae, V. Kittichungchit, N. Ide, M. Ota, and T. Komoda, “Realization of high efficacy white organic light emitting diode by controlling internal light absorption and angular distribution,” J. SID 22, 15 (2015).

J. Soc. Inf. Disp. (1)

T. Komoda, N. Ide, K. Varutt, K. Yamae, H. Tsuji, and Y. Matsuhisa, “High-performance white OLEDs with high color-rendering index for next-generation solid-state lighting,” J. Soc. Inf. Disp. 19(11), 838 (2011).
[Crossref]

Microelectronics J. (2)

L. Pohl, E. Kollá, A. Poppe, and Z. Kohári, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications I: Algorithmic fundamentals,” Microelectronics J. 43(9), 624–632 (2012).
[Crossref]

Z. Kohári, E. Kollá, L. Pohl, and A. Poppe, “Nonlinear electro-thermal modeling and field-simulation of OLEDs for lighting applications II: Luminosity and failure analysis,” Microelectronics J. 44(11), 1011–1018 (2013).
[Crossref]

Opt. Lett. (1)

Org. Electron. (3)

M. Slawinski, M. Weingarten, M. Heuken, A. Vescan, and H. Kalisch, “Investigation of large-area OLED devices with various grid geometries,” Org. Electron. 14(10), 2387–2391 (2013).
[Crossref]

M. Slawinski, D. Bertram, M. Heuken, H. Kalisch, and A. Vescan, “Electrothermal characterization of large-area organic light-emitting diodes employing finite-element simulation,” Org. Electron. 12(8), 1399–1405 (2011).
[Crossref]

J. Park, J. Lee, and Y. Y. Noh, “Optical and thermal properties of large-area OLED lightings with metallic grids,” Org. Electron. 13(1), 184–194 (2012).
[Crossref]

Phys. Rev. B (1)

L. Li, N. Lu, M. Liu, and H. Bässler, “General Einstein relation model in disordered organic semiconductors under quasiequilibrium,” Phys. Rev. B 90(21), 214107 (2014).
[Crossref]

Semicond. Sci. Technol. (1)

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26(3), 034002 (2011).
[Crossref]

Soc. Inform. Display (2)

K. Yamae, H. Tsuji, V. Kittichungchit, N. Ide, and T. Komoda, “Highly efficient white organic light-emitting diodes with over 100 lm/W for next-generation solid-state lighting,” Soc. Inform. Display 21(12), 529–540 (2013).
[Crossref]

J. P. Spindler and T. K. Hatwar, “Fluirescent-based tandem white OLEDs designed for display and solid-state-lighting applications,” Soc. Inform. Display 17(10), 861 (2009).
[Crossref]

Other (1)

R. Ma, P. A. Levermore, H. Pang, P. Mandlik, K. Rajan, J. Silvernail, M. Hack, and J. J. Brown, “66.4: invited paper: challenges and opportunities in scaling up OLED lighting devices,” SID Symp. Dig. Tech. Papers 42, 983 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Three fabricated OLED devices (a) Single-EML structure (b) 2-tandem structure (c) 3-tandem structure.
Fig. 2
Fig. 2 Simulation process diagram for luminance non-uniformity evaluation.
Fig. 3
Fig. 3 Performances of three single-EML, 2-tandem, and 3-tandem OLED unit devices (a) Measured current density and luminance versus the applied voltage (b) Measured current efficiency and power efficiency versus luminance (c) Measured electroluminescence (EL) spectra.
Fig. 4
Fig. 4 OLED unit device models (a) Measured and modeled I-V curves (b) Measured and approximated L-J curves.
Fig. 5
Fig. 5 Luminance distribution evaluation based on circuit simulation (a) Architecture of fabricated panel and position of electrode contacts (b) Overall panel schematic with mesh circuits.
Fig. 6
Fig. 6 The relation between luminance non-uniformity and the conductance of a unit OLED device (a) Simulated luminance non-uniformity versus the maximum luminance (b) Measured conductance of unit devices regarding the output luminance.
Fig. 7
Fig. 7 The measurement results of a fabricated panel (a) Photograph of a fabricated 3-tandem panel at 1,000 cd/m2 where red and green lines present the horizontal and vertical cross-sections to measure the luminance distribution (b) Normalized horizontal luminance distribution (c) Normalized vertical luminance distribution.
Fig. 8
Fig. 8 Estimated non-uniformity plot according to the emission area of square shape panels at ~1,000 cd/m2.

Tables (1)

Tables Icon

Table 1 Specification summary of single-EML, 2-tandem, and 3-tandem unit devices

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L S-EML 0.87+697.59 J S-EML 6.53 J S-EML 2 +0.07 J S-EML 3
L 2tandem 0.39+1522.07 J 2tandem 21.17 J 2tandem 2 +0.26 J 2tandem 3
L 3tandem 0.38+2159.35 J 3tandem 37.24 J 3tandem 2 +1.60 J 3tandem 3
Nonuniformity(%)= L max L min L max ×100

Metrics