Abstract

We report strong enhancement of second-harmonic generation in a hybrid nanostructure with gold gratings embedded in a silicon nitride film. Compared to a flat silicon nitride film, the enhancement factor can be as large as 102 to 103 for transverse magnetic and electric polarizations, respectively in good agreement with numerical results calculated using finite element method. For both polarizations, the enhancement arises from a resonance between the waveguide modes and grating.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient second-harmonic generation in silicon nitride resonant waveguide gratings

Tingyin Ning, Henna Pietarinen, Outi Hyvärinen, Ravi Kumar, Tommi Kaplas, Martti Kauranen, and Goëry Genty
Opt. Lett. 37(20) 4269-4271 (2012)

Third-harmonic UV generation in silicon nitride nanostructures

Tingyin Ning, Outi Hyvärinen, Henna Pietarinen, Tommi Kaplas, Martti Kauranen, and Göery Genty
Opt. Express 21(2) 2012-2017 (2013)

Enhancement of second-harmonic generation in nonlinear nanolaminate metamaterials by nanophotonic resonances

Hui-Hsin Hsiao, Aimi Abass, Johannes Fischer, Rasoul Alaee, Andreas Wickberg, Martin Wegener, and Carsten Rockstuhl
Opt. Express 24(9) 9651-9659 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  2. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
    [Crossref] [PubMed]
  3. T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
    [Crossref]
  4. A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
    [Crossref]
  5. E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
    [Crossref]
  6. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  7. T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in silicon nitride nanostructures,” Opt. Express 21(2), 2012–2017 (2013).
    [Crossref] [PubMed]
  8. S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
    [Crossref]
  9. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  10. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  11. S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Express 22(22), 26517–26525 (2014).
    [Crossref] [PubMed]
  12. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
    [Crossref] [PubMed]
  13. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [Crossref] [PubMed]
  14. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  15. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
    [Crossref] [PubMed]
  16. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
    [Crossref]
  17. T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37(20), 4269–4271 (2012).
    [Crossref] [PubMed]
  18. D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
    [Crossref]
  19. T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
    [Crossref] [PubMed]
  20. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 2003).
  21. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
    [Crossref]
  22. C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285(21-22), 4381–4386 (2012).
    [Crossref]

2014 (2)

A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
[Crossref]

S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities,” Opt. Express 22(22), 26517–26525 (2014).
[Crossref] [PubMed]

2013 (4)

E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in silicon nitride nanostructures,” Opt. Express 21(2), 2012–2017 (2013).
[Crossref] [PubMed]

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

2012 (5)

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285(21-22), 4381–4386 (2012).
[Crossref]

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37(10), 1685–1687 (2012).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37(20), 4269–4271 (2012).
[Crossref] [PubMed]

2011 (4)

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19(12), 11415–11421 (2011).
[Crossref] [PubMed]

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

2010 (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2009 (2)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

2008 (1)

2007 (1)

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Abolghasem, P.

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

Alamin Dow, A. B.

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

Alic, N.

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Capretti, A.

E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
[Crossref]

Cardenas, J.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Dal Negro, L.

E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
[Crossref]

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Dominguez-Juarez, J. L.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref] [PubMed]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Fainman, Y.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Fuji, M.

A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
[Crossref]

Gaeta, A. L.

Genty, G.

Giessen, H.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Halir, R.

Helmy, A. S.

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

Hyvärinen, O.

Ikeda, K.

Imakita, K.

A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
[Crossref]

Kaplas, T.

Karvinen, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Kauranen, M.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in silicon nitride nanostructures,” Opt. Express 21(2), 2012–2017 (2013).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvärinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37(20), 4269–4271 (2012).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Kawamura, I.

A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
[Crossref]

Kherani, N. P.

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

Kitao, A.

A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Kozyreff, G.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref] [PubMed]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Kuittinen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Kumar, R.

Lederer, F.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Leivo, S.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Levy, J. S.

Lippitz, M.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Lipson, M.

Logan, D. F.

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

Luke, K.

Martorell, J.

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref] [PubMed]

Miano, G.

E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
[Crossref]

Miller, S.

Minissale, S.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Niemi, T.

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285(21-22), 4381–4386 (2012).
[Crossref]

Ning, T.

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Okawachi, Y.

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Paul, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Pecora, E. F.

E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
[Crossref]

Pietarinen, H.

Rockstuhl, C.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Saperstein, R. E.

Siltanen, M.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Simonen, J.

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285(21-22), 4381–4386 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

Stepanov, D.

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

Tan, C.

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285(21-22), 4381–4386 (2012).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Utikal, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Vahimaa, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

Voima, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Yerci, S.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Zentgraf, T.

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100(16), 161902 (2012).
[Crossref]

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

E. F. Pecora, A. Capretti, G. Miano, and L. Dal Negro, “Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102(14), 141114 (2013).
[Crossref]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).
[Crossref]

D. F. Logan, A. B. Alamin Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102(6), 061106 (2013).
[Crossref]

J. Phys. D (1)

A. Kitao, K. Imakita, I. Kawamura, and M. Fuji, “An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations,” J. Phys. D 47(21), 215101 (2014).
[Crossref]

Nano Lett. (1)

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat. Commun. 2, 254 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Opt. Commun. (1)

C. Tan, J. Simonen, and T. Niemi, “Hybrid waveguide-surface plasmon polariton modes in a guided-mode resonance grating,” Opt. Commun. 285(21-22), 4381–4386 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Phys. Rev. Lett. (1)

T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz, and H. Giessen, “Towards the origin of the nonlinear response in hybrid plasmonic systems,” Phys. Rev. Lett. 106(13), 133901 (2011).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic image of the cross-section of the hybrid structure. The design parameters are: period = 575 nm, HAu = 30 nm, WAu = 137 nm, and HSiN = 450 nm. (b) SEM image of the Au grating.
Fig. 2
Fig. 2 Local-field distribution of fundamental light (|Eω/Eo|) (a) and (c) and corresponding transverse field at their resonance angles (b) and (d) for TM-in and TE-in. An input intensity of 1.74 × 106 W/m2 at the fundamental wavelength was used in the modeling.
Fig. 3
Fig. 3 Numerically calculated SHG emission vs. angle of incidence in a SiN film under TM-in/TM-out configuration (a) and TE-in/TM-out configuration (b). (c-d) Same in hybrid structure. The linear transmittance is also shown. An input intensity of 1.74 × 106 W/m2 at the fundamental wavelength was used in the modeling.
Fig. 4
Fig. 4 Measured (a) linear transmittance and (b) SHG intensities from the hybrid structure measured for TM-in/TM-out configuration vs. angle of incidence. (c) SHG intensity from a 450-nm planar SiN film for the same configuration. (d) Comparison of SHG intensity from the hybrid structure and planar SiN film.
Fig. 5
Fig. 5 Measured (a) linear transmittance and (b) SHG intensities from the hybrid structure for TE-in/TM-out configuration vs. angle of incidence. (c) SHG intensity from a 450-nm planar SiN film for the same configuration. (d) Comparison of SHG intensity from the hybrid structure and planar SiN film.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

××E(ω) k 1 2 E(ω)= μ 0 ω 2 P (1) (ω),
××E(2ω) k 2 2 E(2ω)= μ 0 ω 2 [ P (1) (2ω)+ P (2) (2ω) ],

Metrics