Abstract

A 2D pyramidal metamaterial-based nano-structure is proposed as a wavelength-selective Thermophotovoltaic (TPV) emitter. Rigorous coupled-wave analysis complemented with normal field method is used to predict the emittance as well as the electromagnetic field and Poynting vector distributions. The proposed emitter is shown to be wavelength-selective, polarization-insensitive, and direction-insensitive in emittance. The mechanisms supporting the emittance close to 1.0 in the wavelength range of 0.3-2.0 μm are elucidated by the distribution of electromagnetic field and Poynting vectors in the proposed structure. Finally, thermal stability and radiant heat-to-electricity TPV efficiency for a realistic InGaAsSb TPV system are discussed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

David N. Woolf, Emil A. Kadlec, Don Bethke, Albert D. Grine, John J. Nogan, Jeffrey G. Cederberg, D. Bruce Burckel, Ting Shan Luk, Eric A. Shaner, and Joel M. Hensley
Optica 5(2) 213-218 (2018)

Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems

Alok Ghanekar, Laura Lin, and Yi Zheng
Opt. Express 24(10) A868-A877 (2016)

Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating

Nghia Nguyen-Huu, Yu-Bin Chen, and Yu-Lung Lo
Opt. Express 20(6) 5882-5890 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. O. Kasap and R. K. Sinha, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2001).
  2. S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices - a review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
    [Crossref]
  3. V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
    [Crossref]
  4. Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  5. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
    [Crossref]
  6. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
    [Crossref]
  7. M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part I – Modeling,” Sol. Energy. In press.
  8. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  9. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
    [Crossref] [PubMed]
  10. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
    [Crossref] [PubMed]
  11. N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
    [Crossref] [PubMed]
  12. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  13. C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 39(18), 5259–5262 (2014).
    [Crossref] [PubMed]
  14. J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
    [Crossref]
  15. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [Crossref]
  16. Y. B. Chen and K. H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transfer 53(23-24), 5542–5551 (2010).
    [Crossref]
  17. B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int, J. Heat Mass Transfe 67, 637–645 (2013).
    [Crossref]
  18. Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, M. Soljacic, and I. Celanović, “Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals,” Opt. Express 22(18), 21711–21718 (2014).
    [Crossref] [PubMed]
  19. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [Crossref]
  20. S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
    [Crossref] [PubMed]
  21. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
    [Crossref] [PubMed]
  22. C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
    [Crossref]
  23. Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21(S6Suppl 6), A1035–A1051 (2013).
    [Crossref] [PubMed]
  24. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  25. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  26. Q. Liang, W. Yu, W. Zhao, T. Wang, J. Zhao, H. Zhang, and S. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
    [Crossref]
  27. S. Hu, H. Yang, X. Huang, and D. Liu, “Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band,” Appl. Phys., A Mater. Sci. Process. 117(3), 1375–1380 (2014).
    [Crossref]
  28. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
    [Crossref]
  29. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
    [Crossref]
  30. H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50(2), 1053–1057 (1979).
    [Crossref]
  31. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  32. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  33. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmitance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  34. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  35. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14(7), 1592–1598 (1997).
    [Crossref]
  36. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24(9), 2880–2890 (2007).
    [Crossref] [PubMed]
  37. R. Antos, V. Vozda, and M. Veis, “Plane wave expansion method used to engineer photonic crystal sensors with high efficiency,” Opt. Express 22(3), 2562–2577 (2014).
    [Crossref] [PubMed]
  38. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  39. J. L. He and S. L. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
    [Crossref]
  40. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [Crossref] [PubMed]
  41. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
    [Crossref]
  42. P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
    [Crossref]
  43. K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
    [Crossref]
  44. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21(9), 11482–11491 (2013).
    [Crossref] [PubMed]
  45. F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
    [Crossref]
  46. W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
    [Crossref]

2015 (1)

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

2014 (5)

2013 (5)

2012 (6)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

N. Nguyen-Huu, Y.-B. Chen, and Y.-L. Lo, “Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating,” Opt. Express 20(6), 5882–5890 (2012).
[Crossref] [PubMed]

2011 (3)

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

2010 (3)

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
[Crossref] [PubMed]

Y. B. Chen and K. H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transfer 53(23-24), 5542–5551 (2010).
[Crossref]

2008 (4)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

2007 (5)

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices - a review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[Crossref]

T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, and W. Osten, “Normal vector method for convergence improvement using the RCWA for crossed gratings,” J. Opt. Soc. Am. A 24(9), 2880–2890 (2007).
[Crossref] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

2006 (1)

J. L. He and S. L. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

2005 (2)

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[Crossref] [PubMed]

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

2003 (2)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

1997 (2)

1995 (2)

1979 (1)

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50(2), 1053–1057 (1979).
[Crossref]

Agrawal, M.

Antos, R.

Arpin, K. A.

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

Basu, S.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices - a review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[Crossref]

Bermel, P.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Bohne, W.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Braun, P. V.

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Cárabe, J.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Celanovic, I.

Chan, W.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

Chan, W. R.

Chang, J.

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

Chen, Y. B.

Y. B. Chen and K. H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transfer 53(23-24), 5542–5551 (2010).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices - a review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[Crossref]

Chen, Y.-B.

Cheng, Q.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Choong, P.

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

Chou, J. B.

Chubb, D. L.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Crowley, C. J.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

Denny, N. R.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

DeWilde, J.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Elkouh, N. A.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Elzouka, M.

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part I – Modeling,” Sol. Energy. In press.

Ermer, S.

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Francoeur, M.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gandía, J. J.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Gaylord, T. K.

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Grann, E. B.

Gray, S. K.

Gupta, M. C.

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Hane, K.

He, J. L.

J. L. He and S. L. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, S. L.

J. L. He and S. L. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Hu, S.

S. Hu, H. Yang, X. Huang, and D. Liu, “Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band,” Appl. Phys., A Mater. Sci. Process. 117(3), 1375–1380 (2014).
[Crossref]

Huang, R.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

Huang, X.

S. Hu, H. Yang, X. Huang, and D. Liu, “Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band,” Appl. Phys., A Mater. Sci. Process. 117(3), 1375–1380 (2014).
[Crossref]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Joannopoulos, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

Joannopoulos, J. D.

Josephson, D. P.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[Crossref] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Kassakian, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

Kerwien, N.

Kim, S.-G.

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Lalanne, P.

Lenert, A.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Li, L. F.

Liang, Q.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Liu, D.

S. Hu, H. Yang, X. Huang, and D. Liu, “Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band,” Appl. Phys., A Mater. Sci. Process. 117(3), 1375–1380 (2014).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Lo, Y.-L.

Losego, M. D.

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Mártil, I.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Martínez, F. L.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Mengüç, M. P.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Moharam, M. G.

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

Murray, S.

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Nagpal, P.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Nam, Y.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Ndao, S.

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part I – Modeling,” Sol. Energy. In press.

Nguyen-Huu, N.

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

Norris, D. J.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Osten, W.

Park, K.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

Peumans, P.

Philipp, H. R.

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50(2), 1053–1057 (1979).
[Crossref]

Pommet, D. A.

Rafler, S.

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Rho, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Rinnerbauer, V.

Röhrich, J.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Ruoff, J.

Sai, H.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[Crossref] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Schuster, T.

Senkevich, J. J.

Sergeant, N. P.

Shen, Y.

Shuai, Y.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int, J. Heat Mass Transfe 67, 637–645 (2013).
[Crossref]

Soljacic, M.

Song, J.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Stein, A.

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Strub, E.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Tan, K. H.

Y. B. Chen and K. H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transfer 53(23-24), 5542–5551 (2010).
[Crossref]

Tao, S.

Teofilo, V. L.

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

Toledano-Luque, M.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Tseng, Y. L.

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

Ungaro, C.

Vaillon, R.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Veis, M.

Vozda, V.

Wang, C.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

Wang, E. N.

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Wang, L.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int, J. Heat Mass Transfe 67, 637–645 (2013).
[Crossref]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Wang, T.

Wu, H.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yang, H.

S. Hu, H. Yang, X. Huang, and D. Liu, “Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band,” Appl. Phys., A Mater. Sci. Process. 117(3), 1375–1380 (2014).
[Crossref]

Yang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yao, J.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yeng, Y. X.

Yin, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Yu, W.

Yugami, H.

H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005).
[Crossref] [PubMed]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Zhang, H.

Zhang, X.

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Zhang, Z. M.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int, J. Heat Mass Transfe 67, 637–645 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices - a review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[Crossref]

Zhao, B.

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int, J. Heat Mass Transfe 67, 637–645 (2013).
[Crossref]

Zhao, J.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Q. Liang, W. Yu, W. Zhao, T. Wang, J. Zhao, H. Zhang, and S. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
[Crossref]

Zhao, W.

AIP Conf. Proc. (1)

C. J. Crowley, N. A. Elkouh, S. Murray, and D. L. Chubb, “Thermophotovoltaic converter performance for radioisotope power systems,” AIP Conf. Proc. 746, 601–614 (2005).
[Crossref]

Appl. Phys. Lett. (6)

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[Crossref]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685–1687 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Hu, H. Yang, X. Huang, and D. Liu, “Metamaterial-based frustum of cones array nanostructure for efficient absorber in the solar spectral band,” Appl. Phys., A Mater. Sci. Process. 117(3), 1375–1380 (2014).
[Crossref]

Chem. Mater. (1)

K. A. Arpin, M. D. Losego, and P. V. Braun, “Electrodeposited 3D tungsten photonic crystals with enhanced thermal stability,” Chem. Mater. 23(21), 4783–4788 (2011).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

J. L. He and S. L. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

IEEE Trans. Energ. Convers. (1)

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011).
[Crossref]

Int, J. Heat Mass Transfe (1)

B. Zhao, L. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure,” Int, J. Heat Mass Transfe 67, 637–645 (2013).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Y. B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices - a review,” Int. J. Energy Res. 31(6-7), 689–716 (2007).
[Crossref]

Int. J. Heat Mass Transfer (1)

Y. B. Chen and K. H. Tan, “The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters,” Int. J. Heat Mass Transfer 53(23-24), 5542–5551 (2010).
[Crossref]

J. Appl. Phys. (1)

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50(2), 1053–1057 (1979).
[Crossref]

J. Mater. Chem. (1)

P. Nagpal, D. P. Josephson, N. R. Denny, J. DeWilde, D. J. Norris, and A. Stein, “Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals,” J. Mater. Chem. 21(29), 10836–10843 (2011).
[Crossref]

J. Opt. Soc. Am. A (6)

J. Phys. Chem. C (1)

V. L. Teofilo, P. Choong, J. Chang, Y. L. Tseng, and S. Ermer, “Thermophotovoltaic energy conversion for space,” J. Phys. Chem. C 112(21), 7841–7845 (2008).
[Crossref]

J. Phys. D Appl. Phys. (1)

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO 2 thin films grown by high pressure reactive sputtering,” J. Phys. D Appl. Phys. 40(17), 5256–5265 (2007).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008).
[Crossref]

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Nano Lett. (2)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012).
[Crossref]

Nature (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring self-assembled metallic photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Sol. Energy Mater. Sol. Cells 94(3), 509–514 (2010).
[Crossref]

Other (4)

S. O. Kasap and R. K. Sinha, Optoelectronics and Photonics: Principles and Practices (Prentice Hall, 2001).

M. Elzouka and S. Ndao, “Towards a near-field concentrated solar thermophotovoltaic microsystem: Part I – Modeling,” Sol. Energy. In press.

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of the numerical model for 2D nano-pyramid structure for (a) top view of four units and (b) side vies of two units.
Fig. 2
Fig. 2 The plane of incidence and polarization.
Fig. 3
Fig. 3 Illustration of normal fields for rectangle gratings.
Fig. 4
Fig. 4 Emittance ε of 1D pyramidal structure as a function of wavelength λ and polar angle θ for TM waves at ϕ = 0° (Λ = 560 nm, wb = 460 nm, wt = 70 nm, tm = 15 nm, td = 35 nm, n = 32).
Fig. 5
Fig. 5 Emittance at λ = 0.8 μm / 1.5 μm / 3.0 μm with different highest diffraction orders for ψ = 90°/0°, ϕ = 0° and θ = 0°.
Fig. 6
Fig. 6 The emittance spectra for several different configurations with ψ = 90°/0°, θ = 0° and ϕ = 0°.
Fig. 7
Fig. 7 Emittance spectra from the proposed structure at different polar angles with ϕ = 0° for (a) TE waves and (b) TM waves.
Fig. 8
Fig. 8 Polar plots of the emittance at ϕ = 0°, 90°, 180° or 270° for several given wavelengths.
Fig. 9
Fig. 9 Polar plots of the emittance at θ = 60° for three given wavelengths.
Fig. 10
Fig. 10 Distributions of the y-component magnetic field |Hy/Hinc| (color maps) and energy flow (arrow maps) in the metamaterial-based pyramidal structure in the plane of y = 0 for (a) λ = 0.8 μm, (b) λ = 1.2 μm, (c) λ = 1.8 μm, and (d) λ = 3.0 μm incident TM waves with θ = 0° and ϕ = 0°.
Fig. 11
Fig. 11 Spectral normal emittance of the proposed structure with different value of wb.
Fig. 12
Fig. 12 Structure of TPV emitter after thermal stability improvement (a) and its emittance for TM waves with ϕ = 0° and θ = 0°, 30° and 60°. Optimized geometry parameters are Λ = 500 nm, wb = 400 nm, wt = 70 nm, tm = 20 nm, td = 40 nm, n = 30.
Fig. 13
Fig. 13 Relevant optical properties for optimized components in an InGaAsSb TPV system. The hemispherical emittance ε hemi of the optimized 2D pyramidal metamaterial-based emitter (Λ = 600 nm, wb = 500 nm, wt = 70 nm, tm = 20 nm, td = 40 nm, n = 30), hemispherical reflectance R hemi of the 0.53 eV tandem filter, the external quantum efficiency (EQE), and the normal emittance ε Ta of Ta at 1478 K are shown.

Tables (1)

Tables Icon

Table 1 Comparison of η TPV and J elec between a greybody emitter (ε = 0.9), optimized HfO2-filled ARC 2D TaPhCa, and optimized 2D pyramidal metamaterial-based emitter in InGaAsSb TPV systems at view factor F = 0.99 and T = 1250 K with/without a cold-side Rugate tandem filter.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ε 00 = f x,i f y,i ε rd +(1 f x,i f y,i ) ε gr .
ε mn = ( ε rd ε gr ) π 2 mn sin( mπ f x,i )sin(nπ f y,i ).
ε 0n = ( ε rd ε gr ) f x πn sin( nπ f y,i ).
ε m0 = ( ε rd ε gr ) f y πm sin( mπ f x,i ).
N V x ={ 1, c x y<x< Λ x /2 1, Λ x /2<x< Λ x c x y 1, Λ x c x y<x< Λ x /2 1, Λ x /2<x< c x y 0,else .
N V y ={ 1, c y x<y< Λ y /2 1, Λ y /2<y< Λ y c y x 1, Λ y c y x<y< Λ y /2 1, Λ y /2<y< c y x 0,else .
[ U y z' U x z' ]=[ K x K y Δ N x N y E K y 2 Δ N x N x K x 2 E+Δ N y N y K x K y +Δ N x N y ][ S y S x ].
N x N x m,n = (1) m+n 1 π 2 ( m 2 n 2 ) .
N x N x m,0 = (1) m 1 π 2 m 2 .
N x N x 0,n = (1) n 1 π 2 n 2 .
N x N x 0,0 = 1 2 .
N y N y m,n = (1) m+n 1 π 2 ( m 2 n 2 ) .
N y N y m,0 = (1) m 1 π 2 m 2 .
N y N y 0,n = (1) n 1 π 2 n 2 .
N y N y 0,0 = 1 2 .
η TPV = P elec,max P em P re .

Metrics