Abstract

We propose and demonstrate a simple detuning method for the low-chirp operation of a polymer-based tunable external-cavity laser (ECL). To ensure the low-chirp operation of this directly-modulated ECL, we first obtain the optimum values of the heater current applied to the polymer Bragg grating reflector (PBR) and the operating temperature of this ECL. For this purpose, we sweep the current applied to the phase control heater until the peak output power measured from the high-reflection (HR) coated facet reaches the minimum value. We then operate this ECL with minimum chirp by tuning the lasing mode to the longer wavelength limit of the stable operation region. This is because the detuned loading effect is maximized at this limit as the in-phase condition between the lights reflected from the PBR and anti-reflection (AR) coated facet of the gain medium is satisfied. Thus, by using this method together with conventional wavelength-locking algorithm, we can operate this ECL with minimum chirp at any wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
10-Gb/s direct modulation of polymer-based tunable external cavity lasers

Byung-Seok Choi, Su Hwan Oh, Ki Soo Kim, Ki-Hong Yoon, Hyun Soo Kim, Mi-Ran Park, Jong Sool Jeong, O-Kyun Kwon, Jun-Kyu Seo, Hak-Kyu Lee, and Yun C. Chung
Opt. Express 20(18) 20368-20375 (2012)

2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector

Ki-Hong Yoon, Su Hwan Oh, Ki Soo Kim, O-Kyun Kwon, Dae Kon Oh, Young-Ouk Noh, and Hyung-Jong Lee
Opt. Express 18(6) 5556-5561 (2010)

L-band tunable external cavity laser based on 1.58 μm superluminescent diode integrated with spot-size converter

Su Hwan Oh, Ki-Hong Yoon, Ki Soo Kim, Jongbae Kim, O-Kyun Kwon, Dae Kon Oh, Young-Ouk Noh, and Hyung-Jong Lee
Opt. Express 18(S3) A300-A306 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
    [Crossref] [PubMed]
  2. K. Vahala and A. Yariv, “Detuned loading in coupled cavity semiconductor lasers-Effect on quantum noise and dynamics,” Appl. Phys. Lett. 45(5), 501–503 (1984).
    [Crossref]
  3. G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
    [Crossref]
  4. B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).
  5. B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
    [Crossref]
  6. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback,” IEE Proc., J Optoelectron. 137(6), 361–369 (1990).
    [Crossref]
  7. E. Detoma, B. Tromborg, and I. Montrosset, “The complex way to laser diode spectra: example of an external cavity laser strong optical feedback,” IEEE J. Quantum Electron. 41(2), 171–182 (2005).
    [Crossref]
  8. H. Klein, “Hybrid InP-Polymer 30 nm tunable DBR Laser for 10 Gbit/s direct Modulation in the C-Band,” in Proceedings of International Conference on Indium Phosphide and Related Materials (IEEE, 2012), 20–21.
    [Crossref]
  9. S. K. Kim and J. Jeong, “Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems,” Opt. Commun. 175(1-3), 109–123 (2000).
    [Crossref]
  10. A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30(8), 1769–1781 (1994).
    [Crossref]
  11. H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron. 35(12), 1817–1825 (1999).
    [Crossref]
  12. N. Ogasawara, R. Ito, and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory,” Jpn. J. Appl. Phys. 27(1), 615–626 (1988).
    [Crossref]
  13. A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
    [Crossref]

2015 (1)

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

2012 (1)

2005 (1)

E. Detoma, B. Tromborg, and I. Montrosset, “The complex way to laser diode spectra: example of an external cavity laser strong optical feedback,” IEEE J. Quantum Electron. 41(2), 171–182 (2005).
[Crossref]

2004 (1)

A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
[Crossref]

2000 (1)

S. K. Kim and J. Jeong, “Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems,” Opt. Commun. 175(1-3), 109–123 (2000).
[Crossref]

1999 (1)

H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron. 35(12), 1817–1825 (1999).
[Crossref]

1994 (1)

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30(8), 1769–1781 (1994).
[Crossref]

1990 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback,” IEE Proc., J Optoelectron. 137(6), 361–369 (1990).
[Crossref]

1988 (2)

N. Ogasawara, R. Ito, and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory,” Jpn. J. Appl. Phys. 27(1), 615–626 (1988).
[Crossref]

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

1987 (1)

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
[Crossref]

1984 (1)

K. Vahala and A. Yariv, “Detuned loading in coupled cavity semiconductor lasers-Effect on quantum noise and dynamics,” Appl. Phys. Lett. 45(5), 501–503 (1984).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

Choi, B.-S.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Chung, Y. C.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Detoma, E.

E. Detoma, B. Tromborg, and I. Montrosset, “The complex way to laser diode spectra: example of an external cavity laser strong optical feedback,” IEEE J. Quantum Electron. 41(2), 171–182 (2005).
[Crossref]

Ducloux, E.

A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
[Crossref]

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback,” IEE Proc., J Optoelectron. 137(6), 361–369 (1990).
[Crossref]

Godard, A.

A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
[Crossref]

Henry, C. H.

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

Ishikawa, H.

H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron. 35(12), 1817–1825 (1999).
[Crossref]

Ito, R.

N. Ogasawara, R. Ito, and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory,” Jpn. J. Appl. Phys. 27(1), 615–626 (1988).
[Crossref]

N. Ogasawara, R. Ito, and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory,” Jpn. J. Appl. Phys. 27(1), 615–626 (1988).
[Crossref]

Jeong, J.

S. K. Kim and J. Jeong, “Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems,” Opt. Commun. 175(1-3), 109–123 (2000).
[Crossref]

Jeong, J. S.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Kim, H. S.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Kim, K. S.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Kim, S. K.

S. K. Kim and J. Jeong, “Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems,” Opt. Commun. 175(1-3), 109–123 (2000).
[Crossref]

Klein, H.

H. Klein, “Hybrid InP-Polymer 30 nm tunable DBR Laser for 10 Gbit/s direct Modulation in the C-Band,” in Proceedings of International Conference on Indium Phosphide and Related Materials (IEEE, 2012), 20–21.
[Crossref]

Kuwatsuka, H.

H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron. 35(12), 1817–1825 (1999).
[Crossref]

Kwon, O.-K.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Lee, H.-K.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Mark, J.

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30(8), 1769–1781 (1994).
[Crossref]

Montrosset, I.

E. Detoma, B. Tromborg, and I. Montrosset, “The complex way to laser diode spectra: example of an external cavity laser strong optical feedback,” IEEE J. Quantum Electron. 41(2), 171–182 (2005).
[Crossref]

Mørk, J.

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30(8), 1769–1781 (1994).
[Crossref]

Ogasawara, N.

N. Ogasawara, R. Ito, and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory,” Jpn. J. Appl. Phys. 27(1), 615–626 (1988).
[Crossref]

Oh, S. H.

Olesen, H.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
[Crossref]

Pan, X.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
[Crossref]

Park, M.-R.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Pauliat, G.

A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
[Crossref]

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback,” IEE Proc., J Optoelectron. 137(6), 361–369 (1990).
[Crossref]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback,” IEE Proc., J Optoelectron. 137(6), 361–369 (1990).
[Crossref]

Roosen, G.

A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
[Crossref]

Saito, S.

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
[Crossref]

Seo, J.-K.

Simoyama, T.

H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron. 35(12), 1817–1825 (1999).
[Crossref]

Tromborg, B.

E. Detoma, B. Tromborg, and I. Montrosset, “The complex way to laser diode spectra: example of an external cavity laser strong optical feedback,” IEEE J. Quantum Electron. 41(2), 171–182 (2005).
[Crossref]

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
[Crossref]

Uskov, A.

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30(8), 1769–1781 (1994).
[Crossref]

Vahala, K.

K. Vahala and A. Yariv, “Detuned loading in coupled cavity semiconductor lasers-Effect on quantum noise and dynamics,” Appl. Phys. Lett. 45(5), 501–503 (1984).
[Crossref]

Yariv, A.

K. Vahala and A. Yariv, “Detuned loading in coupled cavity semiconductor lasers-Effect on quantum noise and dynamics,” Appl. Phys. Lett. 45(5), 501–503 (1984).
[Crossref]

Yoon, K.-H.

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B.-S. Choi, S. H. Oh, K. S. Kim, K.-H. Yoon, H. S. Kim, M.-R. Park, J. S. Jeong, O.-K. Kwon, J.-K. Seo, H.-K. Lee, and Y. C. Chung, “10-Gb/s direct modulation of polymer-based tunable external cavity lasers,” Opt. Express 20(18), 20368–20375 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. Vahala and A. Yariv, “Detuned loading in coupled cavity semiconductor lasers-Effect on quantum noise and dynamics,” Appl. Phys. Lett. 45(5), 501–503 (1984).
[Crossref]

IEE Proc., J Optoelectron. (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Noise and modulation performance of Fabry-Perot and DFB semiconductor lasers with arbitrary external optical feedback,” IEE Proc., J Optoelectron. 137(6), 361–369 (1990).
[Crossref]

IEEE J. Quantum Electron. (7)

E. Detoma, B. Tromborg, and I. Montrosset, “The complex way to laser diode spectra: example of an external cavity laser strong optical feedback,” IEEE J. Quantum Electron. 41(2), 171–182 (2005).
[Crossref]

G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron. 24(2), 134–142 (1988).
[Crossref]

B.-S. Choi, J. S. Jeong, K.-H. Yoon, K. S. Kim, H. S. Kim, M.-R. Park, O.-K. Kwon, H.-K. Lee, and Y. C. Chung, “Evaluation of chirp reduction in polymer-based tunable external-cavity lasers,” IEEE J. Quantum Electron. 51, 2000315 (2015).

B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron. 23(11), 1875–1889 (1987).
[Crossref]

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30(8), 1769–1781 (1994).
[Crossref]

H. Kuwatsuka, T. Simoyama, and H. Ishikawa, “Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition,” IEEE J. Quantum Electron. 35(12), 1817–1825 (1999).
[Crossref]

A. Godard, G. Pauliat, G. Roosen, and E. Ducloux, “Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,” IEEE J. Quantum Electron. 40(8), 970–981 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Ogasawara, R. Ito, and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers: II. Theory,” Jpn. J. Appl. Phys. 27(1), 615–626 (1988).
[Crossref]

Opt. Commun. (1)

S. K. Kim and J. Jeong, “Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems,” Opt. Commun. 175(1-3), 109–123 (2000).
[Crossref]

Opt. Express (1)

Other (1)

H. Klein, “Hybrid InP-Polymer 30 nm tunable DBR Laser for 10 Gbit/s direct Modulation in the C-Band,” in Proceedings of International Conference on Indium Phosphide and Related Materials (IEEE, 2012), 20–21.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the polymer-based tunable ECL module and the device parameters and control variables for detuning the lasing mode.
Fig. 2
Fig. 2 (a) Simulated grating reflectivity (blue line), right reflectivity rR (red line), and reflectivity of the cavity mirror (green line, not to scale) of the polymer-based tunable ECL as a function of the detuned frequency, and rR , effective LEF, and minimum achievable LEF (blue dot) at ϕ1 of (b) 0°, (c) 120°, and (d) 180°.
Fig. 3
Fig. 3 Simulated results for (a) the ratio of power through the PBR to the power through the AR-coated facet and the absolute value of the latter, and (b) the resulting PBR and HR power as a function of the detuned frequency (@ ϕ2 = 105°).
Fig. 4
Fig. 4 Photograph of the butt-coupled tunable ECL.
Fig. 5
Fig. 5 Comparison of the measured lasing wavelength of the tunable ECL with power through the (a) PBR and (b) HR-coated facet when a 9.953-Gb/s modulation signal with a modulation depth of Vpp = 3.4V is applied at a bias current of 70 mA.
Fig. 6
Fig. 6 (a) Typical HR power curves while sweeping the phase control current (shown in applied power) with ten different grating heater currents, Igrating, and (b) a surface plot drawn using the peak values of the HR power during a phase control current sweep as functions of the wavelength (converted from the grating heater current) and operating temperature, Tmodule.
Fig. 7
Fig. 7 (a) Longer wavelength detuned power penalties (red line) and peak HR powers (blue line) and (b) the maximum (blue line with circle) and minimum (blue line with diamond) HR powers during a PC current sweep, and the optimal HR power (red line) obtained at a constant operating temperature, Tmodule, and (c) longer wavelength detuned power penalties (red line) and peak HR powers (blue line) and (d) the maximum (blue line with circle) and minimum (blue line with diamond) HR powers during a PC current sweep, and the optimal HR power (red line) obtained at a constant wavelength of 1545.5 nm.
Fig. 8
Fig. 8 Peak HR powers (contour plot) and some power penalties (at circled conditions) obtained after a transmission over 20-km long SSMF to demonstrate the wavelength and operating temperature dependences of the minimum-chirp conditions.

Tables (1)

Tables Icon

Table 1 ECL Model Parameters

Metrics