Abstract

High sensitivity of surface-plasmon-based sensors stems from the fact that the surface plasmon is a resonance phenomenon. The resonance results from the phase-matching condition when the phase velocity of the surface plasmon wave and of the lateral component of the incident light become equal. We show that this condition can be satisfied simultaneously for many wavelengths. We demonstrate numerically and experimentally that this allows a surface plasmon resonance that extends over a broad wavelength range. We consider two methods of excitation of such broadband surface plasmon resonance: (i) patterning the interface where the surface plasmon propagates and (ii) broadband coupling through dispersion compensation. We demonstrate extremely broadband surface plasmon excitation at the Au-water or Au-air interface that extends through the whole near-infrared range from λ = 1 μm to 3 μm. We show how this broadband surface plasmon can be used for sensitive spectroscopic sensing, in particular for monitoring wetting/dewetting processes such as thin liquid film growth.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon sorting and engineered dispersion curves using multilayer doped semiconductors

Young Uk Jung, Isroel M. Mandel, Igor Bendoym, Andrii B. Golovin, and David T. Crouse
J. Opt. Soc. Am. B 32(5) 1007-1012 (2015)

Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range

Sylvain Herminjard, Lorenzo Sirigu, Hans Peter Herzig, Eric Studemann, Andrea Crottini, Jean-Paul Pellaux, Tobias Gresch, Milan Fischer, and Jérôme Faist
Opt. Express 17(1) 293-303 (2009)

Dispersion engineering of surface plasmons

Isroel M. Mandel, Igor Bendoym, Young U. Jung, Andrii B. Golovin, and David T. Crouse
Opt. Express 21(26) 31883-31893 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref] [PubMed]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref] [PubMed]
  3. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
    [Crossref]
  4. S. Boussaad, J. Pean, and N. J. Tao, “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222–226 (2000).
    [Crossref] [PubMed]
  5. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on kretchmann’s theory,” Anal. Chem. 74, 696–701 (2002).
    [Crossref] [PubMed]
  6. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
    [Crossref]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  8. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  9. J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
    [Crossref] [PubMed]
  10. G. Li and J. Zhang, “Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period,” Sci. Rep. 4, 5914 (2014).
    [PubMed]
  11. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
    [Crossref]
  12. M. Cada, D. Blazek, J. Pistora, K. Postava, and P. Siroky, “Theoretical and experimental study of plasmonic effects in heavily doped gallium arsenide and indium phosphide,” Opt. Mater. Express 5, 340–352 (2015).
    [Crossref]
  13. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [Crossref]
  14. A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
    [Crossref] [PubMed]
  15. H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
    [Crossref] [PubMed]
  16. A. Shalabney and I. Abdulhalim, “Prism dispersion effects in near-guided-wave surface plasmon resonance sensors,” Annalen der Physik 524, 680–686 (2012).
    [Crossref]
  17. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon. 2, 287–318 (2010).
    [Crossref]
  18. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  19. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B 28, A38–A44 (2011).
    [Crossref]
  20. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [Crossref]
  21. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  22. F. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [Crossref]
  23. A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser & Photon. Rev. 5, 571–606 (2011).
    [Crossref]
  24. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50, 2032–2036 (2011).
    [Crossref] [PubMed]
  25. F. Salin and A. Brun, “Dispersion compensation for femtosecond pulses using highindex prisms,” J. Appl. Phys. 61, 4736–4739 (1987).
    [Crossref]
  26. D. Kopf, G. J. Spuhler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
    [Crossref] [PubMed]
  27. A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
    [Crossref]
  28. W. Zong, C. Thirstrup, M. H. Sorensen, and H. C. Pedersen, “Optical biosensor with dispersion compensation,” Opt. Lett. 30, 1138–1140 (2005).
    [Crossref] [PubMed]
  29. P. G. Etchegoin, E. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
    [Crossref] [PubMed]
  30. I. Malitson, “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52, 1377–1379 (1962).
    [Crossref]
  31. P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2004).
    [Crossref]
  32. A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
    [Crossref]
  33. J. Freund, J. Halbritter, and J. Horber, “How dry are dried samples? water adsorption measured by stm,” Microsc. Res. Tech. 44, 327–338 (1999).
    [Crossref] [PubMed]
  34. S. Lipson, “A thickness transition in evaporating water films,” Phase Transitions 77, 677–688 (2004).
    [Crossref]
  35. P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
    [Crossref] [PubMed]
  36. X. Li, X. Li, and C. Wang, “A new method for measuring wetness of flowing steam based on surface plasmon resonance,” Nanoscale research letters 9, 18 (2014).
    [Crossref] [PubMed]
  37. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
    [Crossref]
  38. Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
    [Crossref]
  39. J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
    [Crossref]
  40. R. E. Arias and A. A. Maradudin, “Scattering of a surface plasmon polariton by a localized dielectric surface defect,” Opt. Express 21, 9734–9756 (2013).
    [Crossref] [PubMed]
  41. Z. L. Samson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36, 250–252 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

G. Li and J. Zhang, “Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period,” Sci. Rep. 4, 5914 (2014).
[PubMed]

X. Li, X. Li, and C. Wang, “A new method for measuring wetness of flowing steam based on surface plasmon resonance,” Nanoscale research letters 9, 18 (2014).
[Crossref] [PubMed]

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

2013 (2)

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

R. E. Arias and A. A. Maradudin, “Scattering of a surface plasmon polariton by a localized dielectric surface defect,” Opt. Express 21, 9734–9756 (2013).
[Crossref] [PubMed]

2012 (3)

A. Shalabney and I. Abdulhalim, “Prism dispersion effects in near-guided-wave surface plasmon resonance sensors,” Annalen der Physik 524, 680–686 (2012).
[Crossref]

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

2011 (6)

Z. L. Samson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36, 250–252 (2011).
[Crossref] [PubMed]

P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50, 2032–2036 (2011).
[Crossref] [PubMed]

R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B 28, A38–A44 (2011).
[Crossref]

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser & Photon. Rev. 5, 571–606 (2011).
[Crossref]

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (4)

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
[Crossref]

2008 (3)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

2007 (2)

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

P. G. Etchegoin, E. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

S. Lipson, “A thickness transition in evaporating water films,” Phase Transitions 77, 677–688 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

2002 (2)

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on kretchmann’s theory,” Anal. Chem. 74, 696–701 (2002).
[Crossref] [PubMed]

F. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[Crossref]

2000 (3)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[Crossref]

S. Boussaad, J. Pean, and N. J. Tao, “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222–226 (2000).
[Crossref] [PubMed]

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

1999 (1)

J. Freund, J. Halbritter, and J. Horber, “How dry are dried samples? water adsorption measured by stm,” Microsc. Res. Tech. 44, 327–338 (1999).
[Crossref] [PubMed]

1996 (1)

1987 (1)

F. Salin and A. Brun, “Dispersion compensation for femtosecond pulses using highindex prisms,” J. Appl. Phys. 61, 4736–4739 (1987).
[Crossref]

1962 (1)

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Prism dispersion effects in near-guided-wave surface plasmon resonance sensors,” Annalen der Physik 524, 680–686 (2012).
[Crossref]

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser & Photon. Rev. 5, 571–606 (2011).
[Crossref]

Agarwal, A.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Arias, R. E.

Aroeti, B.

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Baro, A. M.

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

Baron, A.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Beattie, J. K.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

Berini, P.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

Bhatia, P.

Blazek, D.

Bouillard, J.-S.

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

Boussaad, S.

S. Boussaad, J. Pean, and N. J. Tao, “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222–226 (2000).
[Crossref] [PubMed]

Boyd, R. W.

Bozhevolnyi, S. I.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Brochard-Wyart, F.

P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2004).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Brun, A.

F. Salin and A. Brun, “Dispersion compensation for femtosecond pulses using highindex prisms,” J. Appl. Phys. 61, 4736–4739 (1987).
[Crossref]

Cada, M.

Canning, J.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

Chen, J.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Colchero, J.

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

Davidov, D.

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

de Gennes, P.

P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2004).
[Crossref]

Dereux, A.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Dickson, W.

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Freund, J.

J. Freund, J. Halbritter, and J. Horber, “How dry are dried samples? water adsorption measured by stm,” Microsc. Res. Tech. 44, 327–338 (1999).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

García-Vidal, F.

F. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[Crossref]

Genet, C.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Gibson, B. C.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

Gil, A.

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

Golosovsky, M.

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

Gomez-Herrero, J.

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

Gong, Q.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Gonzalez, M. U.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Grosso, D.

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

Gupta, B. D.

Halbritter, J.

J. Freund, J. Halbritter, and J. Horber, “How dry are dried samples? water adsorption measured by stm,” Microsc. Res. Tech. 44, 327–338 (1999).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

Honma, I.

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

Horak, P.

Horber, J.

J. Freund, J. Halbritter, and J. Horber, “How dry are dried samples? water adsorption measured by stm,” Microsc. Res. Tech. 44, 327–338 (1999).
[Crossref] [PubMed]

Hu, J.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
[Crossref]

Hugonin, J.-P.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Ilagan, E.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

Innocenzi, P.

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

Joannopoulos, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[Crossref]

Johnson, S.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Keller, U.

Khurgin, J. B.

Kimerling, L. C.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
[Crossref]

Kopf, D.

Krenn, J. R.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Kurihara, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on kretchmann’s theory,” Anal. Chem. 74, 696–701 (2002).
[Crossref] [PubMed]

Lalanne, P.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Le Ru, E.

P. G. Etchegoin, E. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref] [PubMed]

Li, G.

G. Li and J. Zhang, “Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period,” Sci. Rep. 4, 5914 (2014).
[PubMed]

Li, X.

X. Li, X. Li, and C. Wang, “A new method for measuring wetness of flowing steam based on surface plasmon resonance,” Nanoscale research letters 9, 18 (2014).
[Crossref] [PubMed]

X. Li, X. Li, and C. Wang, “A new method for measuring wetness of flowing steam based on surface plasmon resonance,” Nanoscale research letters 9, 18 (2014).
[Crossref] [PubMed]

Li, Z.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Liao, H.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[Crossref]

Lipson, S.

S. Lipson, “A thickness transition in evaporating water films,” Phase Transitions 77, 677–688 (2004).
[Crossref]

Lirtsman, V.

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Lopez-Tejeira, F.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Luna, M.

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

MacDonald, K. F.

Malfatti, L.

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

Malitson, I.

Maradudin, A. A.

Marcelli, A.

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

Martin-Moreno, L.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Martín-Moreno, L.

F. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[Crossref]

Matsuda, H.

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

Meade, R.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Meyer, M.

P. G. Etchegoin, E. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Pean, J.

S. Boussaad, J. Pean, and N. J. Tao, “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222–226 (2000).
[Crossref] [PubMed]

Pedersen, H. C.

Piccinini, M.

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

Pistora, J.

Postava, K.

Qi, Z.-m.

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

Qiu, M.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Quere, D.

P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2004).
[Crossref]

Radko, I. P.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Rodier, J.-C.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Rodrigo, S. G.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Rousseau, E.

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Salin, F.

F. Salin and A. Brun, “Dispersion compensation for femtosecond pulses using highindex prisms,” J. Appl. Phys. 61, 4736–4739 (1987).
[Crossref]

Samson, Z. L.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Prism dispersion effects in near-guided-wave surface plasmon resonance sensors,” Annalen der Physik 524, 680–686 (2012).
[Crossref]

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser & Photon. Rev. 5, 571–606 (2011).
[Crossref]

Siroky, P.

Sorensen, M. H.

Spuhler, G. J.

Sun, X.

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
[Crossref]

Suzuki, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on kretchmann’s theory,” Anal. Chem. 74, 696–701 (2002).
[Crossref] [PubMed]

Tao, N. J.

S. Boussaad, J. Pean, and N. J. Tao, “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222–226 (2000).
[Crossref] [PubMed]

Thirstrup, C.

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Tzoumis, N.

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Vilain, S.

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

Wang, C.

X. Li, X. Li, and C. Wang, “A new method for measuring wetness of flowing steam based on surface plasmon resonance,” Nanoscale research letters 9, 18 (2014).
[Crossref] [PubMed]

Weeber, J. C.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Wei, M.

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

Weingarten, K. J.

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Winn, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Wurtz, G. A.

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Yue, S.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Zayats, A. V.

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

Zhang, J.

G. Li and J. Zhang, “Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period,” Sci. Rep. 4, 5914 (2014).
[PubMed]

Zhang, X.

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

Zhou, H.

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

Zilbershtein, A.

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

Zong, W.

Adv. Mater. (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Chem. (2)

S. Boussaad, J. Pean, and N. J. Tao, “High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins,” Anal. Chem. 72, 222–226 (2000).
[Crossref] [PubMed]

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on kretchmann’s theory,” Anal. Chem. 74, 696–701 (2002).
[Crossref] [PubMed]

Annalen der Physik (1)

A. Shalabney and I. Abdulhalim, “Prism dispersion effects in near-guided-wave surface plasmon resonance sensors,” Annalen der Physik 524, 680–686 (2012).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Z.-m. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
[Crossref]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[Crossref]

Chem. Commun. (1)

J. Canning, N. Tzoumis, J. K. Beattie, B. C. Gibson, and E. Ilagan, “Water on au sputtered films,” Chem. Commun. 50, 9172–9175 (2014).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (1)

F. Salin and A. Brun, “Dispersion compensation for femtosecond pulses using highindex prisms,” J. Appl. Phys. 61, 4736–4739 (1987).
[Crossref]

J. Chem. Phys. (1)

P. G. Etchegoin, E. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

P. Innocenzi, L. Malfatti, M. Piccinini, A. Marcelli, and D. Grosso, “Water evaporation studied by in situ time-resolved infrared spectroscopy,” J. Phys. Chem. A 113, 2745–2749 (2009).
[Crossref] [PubMed]

JOSA B (1)

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” JOSA B 26, 1032–1041 (2009).
[Crossref]

Langmuir (1)

A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, and A. M. Baro, “Adsorption of water on solid surfaces studied by scanning force microscopy,” Langmuir 16, 5086–5092 (2000).
[Crossref]

Laser & Photon. Rev. (1)

A. Shalabney and I. Abdulhalim, “Sensitivity-enhancement methods for surface plasmon sensors,” Laser & Photon. Rev. 5, 571–606 (2011).
[Crossref]

Microsc. Res. Tech. (1)

J. Freund, J. Halbritter, and J. Horber, “How dry are dried samples? water adsorption measured by stm,” Microsc. Res. Tech. 44, 327–338 (1999).
[Crossref] [PubMed]

Nano Lett. (1)

A. Baron, E. Devaux, J.-C. Rodier, J.-P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[Crossref] [PubMed]

Nanoscale research letters (1)

X. Li, X. Li, and C. Wang, “A new method for measuring wetness of flowing steam based on surface plasmon resonance,” Nanoscale research letters 9, 18 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phase Transitions (1)

S. Lipson, “A thickness transition in evaporating water films,” Phase Transitions 77, 677–688 (2004).
[Crossref]

Phys. Rev. B (1)

F. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[Crossref]

Sci. Rep. (2)

G. Li and J. Zhang, “Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period,” Sci. Rep. 4, 5914 (2014).
[PubMed]

H. Liao, Z. Li, J. Chen, X. Zhang, S. Yue, and Q. Gong, “A submicron broadband surface-plasmon-polariton unidirectional coupler,” Sci. Rep. 3, 1918 (2013).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Scientific Reports (1)

J.-S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle spp antennas based on plasmonic crystals with linear chirp,” Scientific Reports 2, 829 (2012).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

A. Zilbershtein, M. Golosovsky, V. Lirtsman, B. Aroeti, and D. Davidov, “Quantitative surface plasmon spectroscopy: Determination of the infrared optical constants of living cells,” Vib. Spectrosc. 61, 43–49 (2012).
[Crossref]

Other (2)

P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena (Springer, 2004).
[Crossref]

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Excitation frequency of the surface plasmon wave corresponds to the intersection of the surface plasmon dispersion line (green curve) with the light line (black curve). When these two curves significantly overlap, the broadband surface plasmon is excited. This can be achieved by engineering the surface plasmon dispersion (left panel) or light line curvature (right panel).
Fig. 2
Fig. 2 Numerical simulation of the reflectivity from the ZnS/Au/dielectric trilayer as a function of wavenumber and incident angle. The Au film thickness is 18 nm. The deep blue regions indicate reflectivity minimum corresponding to the surface plasmon resonance. (a) Dielectric with negligible dispersion. Due to dispersion of dielectric permittivity of metal, εm, the surface plasmon dispersion curve is slightly bent to the right with respect to the vertical direction (light line). (b) Dielectric with normal dispersion. The surface plasmon dispersion line is strongly bent to the right. (c) Dielectric with anomalous dispersion. The surface plasmon dispersion curve is bent to the left. The blue region between 5700 cm−1 and 7500 cm−1 is almost vertical i.e., strongly overlaps with the light line. This corresponds to the broadband surface plasmon.
Fig. 3
Fig. 3 (a) Numerical simulation of the surface plasmon excitation in the Kretschmann’s configuration with the patterned metal-dielectric interface. We consider a ZnS/Au/grating/water multilayer where on top of a 20 nm thick Au film lies a 40 nm thick grating of the elliptic cross-section, 0.6 μm period, and 0.3 duty cycle. (b) Au grating. (c) Dielectric grating, n = 3. The first band gap appears at the same wavenumber ν =6300 cm−1 for both grating, while the second bandgap for the Au grating is shifted down to 8500 cm−1 with respect to its dielectric counterpart.
Fig. 4
Fig. 4 Surface plasmon propagation in a dielectric bilayer. The surface plasmon wave propagates along the conducting surface coated with a thin dielectric layer with refractive index n1 which is immersed in another dielectric (analyte) with the refractive index n2. At short wavelengths (blue curve) the surface plasmon wave is confined within the dielectric coating and the effective refractive index corresponds to n1. At long wavelengths (red curve) the surface plasmon penetrates deep into the analyte and the effective refractive index corresponds to n2. For n1 < n2 the effective refractive index, as sensed by the surface plasmon wave, exhibits anomalous dispersion.
Fig. 5
Fig. 5 Thin dielectric overlayer strongly affects the surface plasmon dispersion. (a) Optical reflectivity as a function of incident angle and of the wavenumber for a ZnS/Au/dielectric trilayer immersed in water. The refractive index of the dielectric overlayer is low, n1 = 1.2 < nwater. Upon increasing layer thickness d the surface plasmon dispersion curve (blue) progressively bends to the left and for d =300–400 nm it is almost vertical. This is the optimal layer thickness for the broadband surface plasmon excitation. (b) Optical reflectivity as a function of incident angle and the wavenumber for a ZnS/Au/dielectric overlayer/water. The refractive index of the dielectric overlayer is high, n1 = 1.6 > nwater. Upon increasing layer thickness the surface plasmon dispersion curve (blue) progressively bends to the right, as if it were probing the analyte with strong normal dispersion.
Fig. 6
Fig. 6 A broadband surface plasmon in the Kretschmann configuration. Numerical calculation of the optical reflectivity. (a) Spherical Au-coated non-dispersive prism with np = 1.7. The blue region, corresponding to the surface plasmon resonance, is bent to the right due to frequency-dependent Drude term in the dielectric permittivity of Au. (b) Hemispherical dispersive Au-coated sapphire prism. The blue region is bent to the left since prism dispersion partially compensates for Au dispersion. (c) Right-angle sapphire prism with the same Au coating. The broadband light beam enters the prism and diverges upon refraction at the flat prism surface, in such a way that the incident angle θ(ω) at the metal/analyte interface is frequency-dependent. The blue region is strongly bent to the left. The region with the vertical slope (4000 cm−1–7000 cm−1) corresponds to the broadband surface plasmon and appears at α = 16.8 – 17°. The parameters of the simulation are taken from Ref. [27], namely, δθ = 0.8°, dAu =18 nm, ωp = 1.32 × 1016 rad/sec., τ = 6.23 × 10−15 sec., ε b = 9.57 , ε b = 2.51.
Fig. 7
Fig. 7 Experimental setup. The collimated and polarized broadband infrared beam from the FTIR spectrometer impinges on the right-angle Au-coated sapphire prism. The reflectivity spectrum is measured by the liquid nitrogen-cooled MCT detector. A flow-chamber is tightly attached to the prism and can be evacuated or filled with desired analyte liquid using fine ducts. The background measurements were performed with the chamber filled with distilled water.
Fig. 8
Fig. 8 A broadband surface plasmon in air. The red curve shows our measurements of the reflectivity from the sapphire/Au/air, while the black curve shows numerical simulation based on Fresnel formulae and Eq. (3). The fitting parameters are dAu =16.5 nm, ωp = 1.19×1016 rad/sec., τ = 2.1×10−15 sec., ε b = 11 , ε b = 16. The incident angle is α = 15.7° and the beam divergence is δα = 0.36°. Dielectric permittivity of sapphire was taken from Ref. [30].
Fig. 9
Fig. 9 Calculated optical reflectivity from two analytes under condition of the broadband surface plasmon resonance. The red line indicates reflectivity of the Au-coated sapphire prism exposed to air (εd = 1.00056). The green line shows reflectivity from the hypothetical dispersionless analyte with εd = 1.008. In comparison to air, reflectivity above 7000 cm−1 is increased and the peak corresponding to the total internal reflection shifts from 3132 cm−1 to 3320 cm−1. The blue line shows reflectivity from a 5 nm thick water film on Au. The reflectivity above 7000 cm−1 is increased but the total internal reflection peak does not shift.
Fig. 10
Fig. 10 Evolution of the reflectivity spectra after inserting liquid to the closed flow chamber. (a) Water. (b) Ethanol. The reflectivity grows with time, especially at high frequencies, indicating thin film formation on the Au-coated sapphire prism. The inset shows film thickness versus time. The solid lines stay for the exponential fit, d = d 0 ( 1 e t τ ), where d0 =13.8 nm, τ = 4.3 min for water and d0 =37 nm, τ = 1.5 min for ethanol.
Fig. 11
Fig. 11 Numerical calculation of the reflectivity from the Au-coated sapphire prism covered with a thin water film, under conditions of the broadband surface plasmon resonance. Film thickness is indicated at each curve.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k S P = ω c ε d ε m ε d + ε m
sin θ = ε d ε m ε p ( ε d + ε m )
ε m = 1 ω p 2 τ 2 1 + ω 2 τ 2 + i ω p 2 τ ω ( 1 + ω 2 τ 2 ) + ε b + i ε b
ε d ε p sin 2 θ [ 1 + ε p sin 2 θ 1 ω p 2 ω 2 ε p sin 2 θ ]
n e f f = 1 δ 0 n ( z ) e z δ d z

Metrics