Abstract

A relative broadband circular polarization analyzer based on a single-turn Archimedean nano-pinholes array has been proposed and investigated systematically from visible spectrum to near infrared region. The spiral arrangement of circular nano-pinholes can implement spatially separated fields according to the relationship between the spiral direction of Archimedean structure and chirality of circularly polarized light (CPL). The enhanced-characteristics mechanisms of the single-turn spirally arranged Archimedean pinholes array have been deduced and investigated by the theoretical analysis and numerical simulation in detail. Different from the single operating wavelength of the spiral slit structure, this novel design also shows a relative wide range of the operating wavelengths in the focusing and defocusing effects. The new proposed circular polarization analyzer could find more extensive applications, such as analyzing the physiological properties of chiral molecules based on circular polarizations, full Stokes-parameter polarimetric imaging applications and so on.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graphene circular polarization analyzer based on spiral metal triangle antennas arrays

Bofeng Zhu, Guobin Ren, Yixiao Gao, Beilei Wu, Chenglong Wan, and Shuisheng Jian
Opt. Express 23(19) 24730-24737 (2015)

Plasmonic focusing lens based on single-turn nano-pinholes array

Jingran Zhang, Zhongyi Guo, Caiwang Ge, Wei Wang, Rongzhen Li, Yongxuan Sun, Fei Shen, Shiliang Qu, and Jun Gao
Opt. Express 23(14) 17883-17891 (2015)

Graphene circular polarization analyzer based on unidirectional excitation of plasmons

Bofeng Zhu, Guobin Ren, Yixiao Gao, Beilei Wu, Chenglong Wan, and Shuisheng Jian
Opt. Express 23(25) 32420-32428 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
    [Crossref]
  2. Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
    [Crossref]
  3. Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1(1), 18–29 (2011).
    [Crossref]
  4. S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
    [Crossref] [PubMed]
  5. Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
    [Crossref]
  6. J. Zhang, Z. Guo, C. Ge, W. Wang, R. Li, Y. Sun, F. Shen, S. Qu, and J. Gao, “Plasmonic focusing lens based on single-turn nano-pinholes array,” Opt. Express 23(14), 17883–17891 (2015).
    [Crossref] [PubMed]
  7. W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23(13), 16782–16791 (2015).
    [Crossref] [PubMed]
  8. W. Wang, Z. Guo, R. Li, J. Zhang, Y. Liu, X. Wang, and S. Qu, “Ultra-thin, planar, broadband, dual-polarity, plasmonic metalens,” Photonics Res. 3(3), 68–71 (2015).
    [Crossref]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [Crossref] [PubMed]
  11. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [Crossref]
  12. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [Crossref] [PubMed]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  14. H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
    [Crossref] [PubMed]
  15. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  16. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [Crossref] [PubMed]
  17. K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
    [Crossref] [PubMed]
  18. W. Chen, R. L. Nelson, and Q. Zhan, “Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens,” Opt. Lett. 37(9), 1442–1444 (2012).
    [Crossref] [PubMed]
  19. J. Zhang, Z. Guo, R. Li, W. Wang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure,” Plasmonics (2015), in press.
  20. R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
    [Crossref] [PubMed]
  21. B. Zhu, G. Ren, M. J. Cryan, C. Wan, Y. Gao, Y. Yang, and S. Jian, “Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer,” Opt. Express 23(7), 8348–8356 (2015).
    [Crossref] [PubMed]
  22. J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
    [Crossref]
  23. G. Lévêque, O. J. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007).
    [Crossref]
  24. S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
    [Crossref]
  25. S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
    [Crossref]
  26. W. Chen, G. Rui, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer,” Opt. Express 20(24), 26299–26307 (2012).
    [Crossref] [PubMed]
  27. J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Frontiers Optoelectron. 5(2), 171–181 (2012).
    [Crossref]
  28. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
    [Crossref]
  29. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [Crossref] [PubMed]
  30. W. Chen, R. L. Nelson, and Q. Zhan, “Geometrical phase and surface plasmon focusing with azimuthal polarization,” Opt. Lett. 37(4), 581–583 (2012).
    [Crossref] [PubMed]

2015 (7)

J. Zhang, Z. Guo, C. Ge, W. Wang, R. Li, Y. Sun, F. Shen, S. Qu, and J. Gao, “Plasmonic focusing lens based on single-turn nano-pinholes array,” Opt. Express 23(14), 17883–17891 (2015).
[Crossref] [PubMed]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23(13), 16782–16791 (2015).
[Crossref] [PubMed]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Liu, X. Wang, and S. Qu, “Ultra-thin, planar, broadband, dual-polarity, plasmonic metalens,” Photonics Res. 3(3), 68–71 (2015).
[Crossref]

B. Zhu, G. Ren, M. J. Cryan, C. Wan, Y. Gao, Y. Yang, and S. Jian, “Tunable graphene-coated spiral dielectric lens as a circular polarization analyzer,” Opt. Express 23(7), 8348–8356 (2015).
[Crossref] [PubMed]

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

2014 (2)

R. Li, Z. Guo, W. Wang, J. Zhang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators,” Opt. Express 22(23), 27968–27975 (2014).
[Crossref] [PubMed]

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

2013 (1)

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (1)

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1(1), 18–29 (2011).
[Crossref]

2010 (1)

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

2009 (3)

2008 (1)

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

2007 (1)

G. Lévêque, O. J. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007).
[Crossref]

2006 (1)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

2005 (2)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Abeysinghe, D. C.

Aussenegg, F. R.

Bachman, K. A.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Chen, W.

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chum, C. C.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Collins, R. T.

Cryan, M. J.

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ditlbacher, H.

Du, C.

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Fang, Z.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Flammer, P. D.

Fu, Y.

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1(1), 18–29 (2011).
[Crossref]

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Furtak, T. E.

Gan, X.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[Crossref]

Gao, J.

Gao, Y.

Ge, C.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[Crossref]

Guo, Z.

Hollingsworth, R. E.

Huang, T.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Ishii, S.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Jia, B.

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[Crossref]

Jian, S.

Kildishev, A. V.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Kim, K.

Kim, K. Y.

Kim, S. J.

S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Kwon, H.

S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Lamprecht, B.

Lee, B.

S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

Lee, S. Y.

S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2(1), 6–13 (2015).
[Crossref]

S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Leitner, A.

Leong, E. S. P.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Lévêque, G.

G. Lévêque, O. J. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007).
[Crossref]

Lezec, H. J.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, J.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Li, R.

Li, Y.

Lim, L. E. N.

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Lin, F.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Linke, R. A.

Liu, H.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Liu, J.

Liu, W.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Liu, Y.

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Liu, X. Wang, and S. Qu, “Ultra-thin, planar, broadband, dual-polarity, plasmonic metalens,” Photonics Res. 3(3), 68–71 (2015).
[Crossref]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23(13), 16782–16791 (2015).
[Crossref] [PubMed]

Liu, Y. J.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Martin, O. J.

G. Lévêque, O. J. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007).
[Crossref]

Nelson, R. L.

Park, H.

Pellerin, K. M.

Peltzer, J. J.

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Qu, S.

Ren, G.

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Rui, G.

Shalaev, V. M.

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Shen, F.

Shi, Z.

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Sun, Y.

Tang, P.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Teng, J. H.

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wan, C.

Wang, J.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Frontiers Optoelectron. 5(2), 171–181 (2012).
[Crossref]

Wang, Q.

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Frontiers Optoelectron. 5(2), 171–181 (2012).
[Crossref]

Wang, W.

Wang, X.

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Li, Y. Liu, X. Wang, and S. Qu, “Plasmonics metalens independent from the incident polarizations,” Opt. Express 23(13), 16782–16791 (2015).
[Crossref] [PubMed]

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Liu, X. Wang, and S. Qu, “Ultra-thin, planar, broadband, dual-polarity, plasmonic metalens,” Photonics Res. 3(3), 68–71 (2015).
[Crossref]

Wang, Y.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Weiner, J.

G. Lévêque, O. J. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Yang, S.

Yang, Y.

Zhan, Q.

Zhang, A.

Zhang, J.

Zhang, M.

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Frontiers Optoelectron. 5(2), 171–181 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1(1), 18–29 (2011).
[Crossref]

Zhou, W.

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Zhou, X.

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1(1), 18–29 (2011).
[Crossref]

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Zhu, B.

Zhu, S.

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Zhu, X.

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. J. Liu, H. Liu, E. S. P. Leong, C. C. Chum, and J. H. Teng, “Fractal Holey Metal Microlenses with Significantly Suppressed Side Lobes and High‐Order Diffractions in Focusing,” Adv. Opt. Mater. 2(5), 487–492 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. Li, P. Tang, W. Liu, T. Huang, J. Wang, Y. Wang, F. Lin, Z. Fang, and X. Zhu, “Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation,” Appl. Phys. Lett. 106(16), 161106 (2015).
[Crossref]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[Crossref]

Frontiers Optoelectron. (1)

J. Wang, Q. Wang, and M. Zhang, “Development and prospect of near-field optical measurements and characterizations,” Frontiers Optoelectron. 5(2), 171–181 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Y. Lee, S. J. Kim, H. Kwon, and B. Lee, “Spin-Direction Control of High-Order Plasmonic Vortex With Double-Ring Distributed Nanoslits,” IEEE Photonics Technol. Lett. 27(7), 705–708 (2015).
[Crossref]

Insciences J (1)

Y. Zhang, Y. Fu, and X. Zhou, “Investigation of metallic elliptical nano-pinholes structure-based plasmonic lenses: from design to testing,” Insciences J 1(1), 18–29 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

Nano Lett. (1)

S. Ishii, V. M. Shalaev, and A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013).
[Crossref] [PubMed]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Optica (1)

Photonics Res. (1)

W. Wang, Z. Guo, R. Li, J. Zhang, Y. Liu, X. Wang, and S. Qu, “Ultra-thin, planar, broadband, dual-polarity, plasmonic metalens,” Photonics Res. 3(3), 68–71 (2015).
[Crossref]

Phys. Rev. B (1)

G. Lévêque, O. J. Martin, and J. Weiner, “Transient behavior of surface plasmon polaritons scattered at a subwavelength groove,” Phys. Rev. B 76(15), 155418 (2007).
[Crossref]

Phys. Rev. Lett. (1)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Plasmonics (1)

Z. Shi, Y. Fu, X. Zhou, and S. Zhu, “Polarization Effect on Superfocusing of a Plasmonic Lens Structured with Radialized and Chirped Elliptical Nanopinholes,” Plasmonics 5(2), 175–182 (2010).
[Crossref]

Res. Lett. Phys. (1)

Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Res. Lett. Phys. 2008, 148505 (2008).
[Crossref]

Other (1)

J. Zhang, Z. Guo, R. Li, W. Wang, A. Zhang, J. Liu, S. Qu, and J. Gao, “Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure,” Plasmonics (2015), in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The schematic diagram of the single-turn Archimedean pinholes array (25 pinholes): lateral view (a) and the top view (b).
Fig. 2
Fig. 2 A schematic for explaining the definitions of parameters used in the proposed structure. (a) the azimuthal polarization components, (b) the radial polarization components of LCP illumination, (c) the schematic for the two dipole sources associated with azimuthal and radial polarization components (red arrows) and the concrete coupling dipole sources between azimuthal and radial polarization components (green dashed arrows).
Fig. 3
Fig. 3 The longitudinal electric field intensity distributions at XOY plane under RCP (a) and LCP (b) illuminations.
Fig. 4
Fig. 4 The comparison of the optimal circular polarization extinction ratio as the function of r0 and the position along z axis(from z = −1.45 μm to z = 0.25μm) for our proposed Archimedean nano-pinholes array (a),and the traditional spiral slit structure (b)
Fig. 5
Fig. 5 The longitudinal electric field intensity distributions at yoz plane under circular-polarization illuminations. (a)(b)(c) for the single-turn Archimedean spiral slit, (d)(e)(f) for 25 Archimedean nano-pinholes array with r0 = 1400nm.
Fig. 6
Fig. 6 The circular polarization extinction ratio as the functions of the incident wavelength and the position along Z axis (from z = −1.45μm to z = 0μm).
Fig. 7
Fig. 7 The electric field distributions at yoz plane. The left column ((a)(c)) is under RCP illuminations and the right column ((b)(d)) is under LCP illuminations;(a)(b)The incident wavelength is 715nm, (c)(d) The incident wavelength is 1000nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E LCP = 1 2 ( e x i e y )= 1 2 e i θ 1 ( e ρ 1 i e θ 1 )
E z (ρ,θ,z)= e κ a z A(φ( θ 1 )) e jΦ(φ( θ 1 ), θ 1 )+jm θ 1 e j k spp | ρ ρ 1 | d θ 1
A= A 0 cos(φ( θ 1 ))
Φ=ϕ( θ 1 )
E z (ρ,θ,z)= e κ a z A 0 e ±j θ 1 +jm θ 1 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 J m±1 ( k spp ρ)
E z (ρ,θ,z)=2 e κ a z 2 /2 A 0 e j( θ 1 +3* π 4 )+jm θ 1 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 = 2 e κ a z A 0 e j θ 1 +jm θ 1 +j3* π 4 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 = 2 e κ a z e j3* π 4 A 0 e j θ 1 +jm θ 1 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 J m+1 ( k spp ρ)
E z (ρ,θ,z)=2 e κ a z 2 /2 A 0 e j( θ 1 +3* π 4 )+jm θ 1 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 = 2 e κ a z A 0 e j θ 1 +jm θ 1 j3* π 4 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 = 2 e κ a z e j3* π 4 A 0 e j θ 1 +jm θ 1 e j k spp ( ρ 0 ρcos(θ θ 1 )) d θ 1 J m1 ( k spp ρ)

Metrics