Abstract

An approach for reducing chromatic dispersion (CD) induced Brillouin gain spectrum (BGS) distortion and measurement instabilities in coherent Brillouin optical time domain analysis (BOTDA) sensing systems is proposed and experimentally demonstrated. By utilizing intensity modulated probe (IMP) instead of phase modulated probe (PMP), sensing performance is obviously improved. Reduction of ~6-MHz decoding error caused by the CD induced BGS distortion is achieved in the measurement of Brillouin frequency shift (BFS) along the whole 40-km sensing distance. Enhanced system stabilities are demonstrated by testing the BGS under different conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation

Zonglei Li, Lianshan Yan, Liyang Shao, Wei Pan, Bin Luo, Jiawei Liang, Haijun He, and Yunpeng Zhang
Opt. Express 24(5) 4824-4833 (2016)

Frequency shift estimation technique near the hotspot in BOTDA sensor

Xizi Sun, Xiaobin Hong, Sheng Wang, Xia Gao, Hongxiang Guo, Yan Li, Jifang Qiu, and Jian Wu
Opt. Express 27(9) 12899-12913 (2019)

BOTDA using channel estimation with direct-detection optical OFDM technique

Can Zhao, Ming Tang, Liang Wang, Hao Wu, Zhiyong Zhao, Yunli Dang, Jiadi Wu, Songnian Fu, Deming Liu, and Perry Ping Shum
Opt. Express 25(11) 12698-12709 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
    [Crossref] [PubMed]
  2. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  3. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
    [Crossref] [PubMed]
  4. X. Lu, M. A. Soto, M. González-Herraez, and L. Thévenaz, “Brillouin distributed fibre sensing using phase modulated probe,” in Proc. SPIE, Fifth European Workshop on Optical Fibre Sensors8794, 87943P (2013).
    [Crossref]
  5. A. Zornoza, M. Saguesand, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol. 30(8), 1066–1072 (2012).
    [Crossref]
  6. J. Urricelqui, M. Sagues, and A. Loayssa, “Synthesis of Brillouin frequency shift profiles to compensate non-local effects and Brillouin induced noise in BOTDA sensors,” Opt. Express 22(15), 18195–18202 (2014).
    [Crossref] [PubMed]
  7. J. Urricelqui, M. Sagues, and A. Loayssa, “Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors,” Opt. Express 22(14), 17403–17408 (2014).
    [Crossref] [PubMed]
  8. J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21(14), 17186–17194 (2013).
    [Crossref] [PubMed]
  9. X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
    [Crossref]
  10. Z. Li, L. Yan, L. Shao, W. Pan, and B. Luo, “Coherent BOTDA sensor with intensity modulated local light and IQ demodulation,” Opt. Express 23(12), 16407–16415 (2015).
    [Crossref] [PubMed]
  11. F. Ramos and J. Martí, “Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems,” IEEE Photonics Technol. Lett. 12(5), 549–551 (2000).
    [Crossref]

2015 (1)

2014 (3)

2013 (1)

2012 (2)

2010 (1)

2008 (1)

2000 (1)

F. Ramos and J. Martí, “Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems,” IEEE Photonics Technol. Lett. 12(5), 549–551 (2000).
[Crossref]

Angulo-Vinuesa, X.

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
[Crossref] [PubMed]

Bacquet, D.

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

Bao, X.

Bolognini, G.

Chen, L.

Corredera, P.

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
[Crossref] [PubMed]

Di Pasquale, F.

Gonzalez-Herraez, M.

González-Herraez, M.

X. Lu, M. A. Soto, M. González-Herraez, and L. Thévenaz, “Brillouin distributed fibre sensing using phase modulated probe,” in Proc. SPIE, Fifth European Workshop on Optical Fibre Sensors8794, 87943P (2013).
[Crossref]

Gonzalez-Herraezet, M.

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

Li, W.

Li, Y.

Li, Z.

Loayssa, A.

Lu, X.

X. Lu, M. A. Soto, M. González-Herraez, and L. Thévenaz, “Brillouin distributed fibre sensing using phase modulated probe,” in Proc. SPIE, Fifth European Workshop on Optical Fibre Sensors8794, 87943P (2013).
[Crossref]

Luo, B.

Martí, J.

F. Ramos and J. Martí, “Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems,” IEEE Photonics Technol. Lett. 12(5), 549–551 (2000).
[Crossref]

Martin-Lopez, S.

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
[Crossref] [PubMed]

Pan, W.

Ramos, F.

F. Ramos and J. Martí, “Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems,” IEEE Photonics Technol. Lett. 12(5), 549–551 (2000).
[Crossref]

Sagues, M.

Saguesand, M.

Shao, L.

Soto, M. A.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express 18(14), 14878–14892 (2010).
[Crossref] [PubMed]

X. Lu, M. A. Soto, M. González-Herraez, and L. Thévenaz, “Brillouin distributed fibre sensing using phase modulated probe,” in Proc. SPIE, Fifth European Workshop on Optical Fibre Sensors8794, 87943P (2013).
[Crossref]

Szriftgiser, P.

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

Thévenaz, L.

X. Lu, M. A. Soto, M. González-Herraez, and L. Thévenaz, “Brillouin distributed fibre sensing using phase modulated probe,” in Proc. SPIE, Fifth European Workshop on Optical Fibre Sensors8794, 87943P (2013).
[Crossref]

Urricelqui, J.

Yan, L.

Zornoza, A.

IEEE Photonics Technol. Lett. (2)

X. Angulo-Vinuesa, D. Bacquet, S. Martin-Lopez, P. Corredera, P. Szriftgiser, and M. Gonzalez-Herraezet, “Relative intensity noise transfer reduction in Raman-assisted BOTDA systems,” IEEE Photonics Technol. Lett. 26(3), 271–274 (2014).
[Crossref]

F. Ramos and J. Martí, “Frequency transfer function of dispersive and nonlinear single-mode optical fibers in microwave optical systems,” IEEE Photonics Technol. Lett. 12(5), 549–551 (2000).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (7)

Other (1)

X. Lu, M. A. Soto, M. González-Herraez, and L. Thévenaz, “Brillouin distributed fibre sensing using phase modulated probe,” in Proc. SPIE, Fifth European Workshop on Optical Fibre Sensors8794, 87943P (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of coherent BOTDA sensors based on (a) phase modulated probe (PMP) and (b) intensity modulated probe (IMP). PM: phase modulation; IM: intensity modulation; FUT: fiber under test; CD: chromatic dispersion. fP is the frequency of laser source light, fP-fLO is the frequency of local light, generated by the frequency downshift of laser source light by fLO, fP-fLO ± fSare the frequencies of the two sidebands of the phase modulation of the local light in PMP case and of the two sidebands of the intensity modulation of the local light in IMP case, respectively.
Fig. 2
Fig. 2 Simulated BGS (i.e. Vgp) at different local gain values when PMP is applied and assuming that (a)D = 0 and (b) D = 17ps/nm/km.
Fig. 3
Fig. 3 Simulated BGS (i.e. Vgi) at different local gain values when IMP is applied and assuming that (a) D = 0 and (b) D = 17ps/nm/km.
Fig. 4
Fig. 4 Experimental setup of the proposed coherent BOTDA sensor. TLS: tunable laser source; PC: polarization controller; EOM: electro-optic modulator; EDFA: erbium-dropped fiber amplifier; CW: continue wave; PD: photo-detector; BPF: band pass filter; LNA: low noise amplifier; OSC: oscilloscope.
Fig. 5
Fig. 5 (a) Measured PM-IM conversion versus fS + fLO without pulsed pump gain (i.e. Vwp shown in the green line) and with pulsed pump gain (i.e. Vdp shown in the blue line). (b) Calculated BGS (i.e. Vgp shown in the purple line) and its Lorentz fitting curve (shown in the red line).
Fig. 6
Fig. 6 (a) Measured IM-IM conversion versus fS + fLO without pulsed pump gain (i.e. Vwi shown in the green line) and with pulsed pump gain (i.e. Vdi shown in the blue line), the dashed black line shows the voltage jitter of the RF sweeping signal (i.e. ES) without fiber link transmission. (b) Calculated BGS (i.e. Vgi shown in the purple line) and its Lorentz fitting curve (shown in the red line).
Fig. 7
Fig. 7 Decoded BFS (a) along the whole sensing fiber and (b) from 39.95km to 40km in PMP case (blue line) and IMP (red line) case. The insert in (a) shows the difference between the decoded BFS in IMP case and PMP case, with an average value (AV) of 6-MHZ
Fig. 8
Fig. 8 Measured BGS at three different conditions: 1) ER = 30dB and fS = 0dBm (blue line); 2) ER = 30dB and fS = 20dBm (green line), and 3) ER = 20dB and fS = 10dBm (red line) in (a) PMP case and (b) IMP case.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ E p = E L O exp ( j 2 π ( f P f L O ) t ) + E S exp ( j ( 2 π ( f P f L O + f S ) t + π / 2 ) ) + E S ( 1 + g S B S ( f D ) ) exp ( j ( 2 π ( f P f L O f S ) t + π / 2 + φ g ( f D ) ) ) E i = E L O exp ( j 2 π ( f P f L O ) t ) + E S exp ( j 2 π ( f P f L O + f S ) t ) + E S ( 1 + g S B S ( f D ) ) exp ( j ( 2 π ( f P f L O f S ) t + φ g ( f D ) ) )
{ V p ( f S ) 4 R d R C E L O E S g 0 g S B S ( f D ) sin ( 2 π f S t + ϕ p ) V i ( f S ) = R d R C E i E i * = 2 R d R C E L O E S ( 1 + g S B S ( f D ) ) cos ( 2 π f S t φ g ( f D ) ) + 2 R d R C E L O E S cos ( 2 π f S t ) = 2 R d R C E L O E S g S B S ( f D ) 2 + 4 ( 1 + g S B S ( f D ) ) cos 2 ( φ g ( f D ) / 2 ) sin ( 2 π f S t + ϕ i ) 4 R d R C E L O E S 1 + g S B S ( f D ) sin ( 2 π f S t + ϕ i )
{ V d p ( f S ) = 4 R d R C E L O E S g S B S ( f D ) 2 + 4 ( 1 + g S B S ( f D ) ) s i n 2 ( π λ c 2 D L f s 2 / c + φ g ( f D ) / 2 ) s i n ( 2 π f S t + ϕ d p ) V d i ( f S ) = 4 R d R C E L O E S g S B S ( f D ) 2 + 4 ( 1 + g S B S ( f D ) ) cos 2 ( π λ c 2 D L f s 2 / c + φ g ( f D ) / 2 ) s i n ( 2 π f S t + ϕ d i )
{ V w p ( f S ) = 8 R d R C E L O E S sin ( π λ c 2 D L f s 2 / c ) sin ( 2 π f S t + ϕ w p ) V w i ( f S ) = 8 R d R C E L O E S cos ( π λ c 2 D L f s 2 / c ) sin ( 2 π f S t + ϕ w i )
{ V g p ( f D ) g S B S ( f D ) 2 + 4 ( 1 + g S B S ( f D ) ) sin 2 ( π λ c 2 D L ( f B + f D f L O ) 2 / c + φ g ( f D ) / 2 ) 2 sin ( π λ c 2 D L ( f B + f D f L O ) 2 / c ) V g i ( f D ) g S B S ( f D ) 2 + 4 ( 1 + g S B S ( f D ) ) cos 2 ( π λ c 2 D L ( f B + f D f L O ) 2 / c + φ g ( f D ) / 2 ) 2 cos ( π λ c 2 D L ( f B + f D f L O ) 2 / c )

Metrics