Abstract

Fano-like coupling was investigated extensively in plasmonic nanostructures, which is based on the interaction between the photonic and plasmonic resonance modes. Metallic photonic crystals consisting of waveguide metallic gratings are typical devices exhibiting strong Fano-coupling between waveguide and plasmon resonance modes. However, we demonstrate here that similar effects can also be achieved in waveguide dielectric grating structures. In this case, the broad-band strong optical extinction results from multifold diffraction processes, instead of the plasmonic absorption and scattering of light. The diffraction efficiency of the waveguide dielectric gratings was tuned by changing the duty cycle through adjusting the exposure time in interference lithography. Enhanced diffraction efficiency reduces the direct transmission while enhances the waveguide resonance mode, leading to a Fano-like coupling process.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor

Wenzhen Ren, Yanmeng Dai, Hongbing Cai, Huaiyi Ding, Nan Pan, and Xiaoping Wang
Opt. Express 21(8) 10251-10258 (2013)

Metallic diffraction grating enhanced coupling in whispering gallery resonator

Yanyan Zhou, Xia Yu, Haixi Zhang, and Feng Luan
Opt. Express 21(7) 8939-8944 (2013)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
    [Crossref] [PubMed]
  2. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  3. D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
    [Crossref]
  4. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  5. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
    [Crossref] [PubMed]
  6. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  7. C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
    [Crossref]
  8. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5(10), 8202–8211 (2011).
    [Crossref] [PubMed]
  9. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
    [Crossref] [PubMed]
  10. N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
    [Crossref] [PubMed]
  11. R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
    [Crossref] [PubMed]
  12. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
    [Crossref] [PubMed]
  13. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
    [Crossref] [PubMed]
  14. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  15. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  16. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [Crossref] [PubMed]
  17. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Optica Acta 33(5), 607–619 (1986).
    [Crossref]
  18. K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
    [Crossref] [PubMed]
  19. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
    [Crossref]
  20. X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
    [Crossref]
  21. S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
    [Crossref]
  22. S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
    [Crossref]
  23. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [Crossref] [PubMed]
  24. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  25. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32(10), 1299–1301 (2007).
    [Crossref] [PubMed]
  26. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  27. S. Habraken, Y. Renotte, S. Roose, E. Stijns, and Y. Lion, “Design for polarizing holographic optical elements,” Appl. Opt. 34(19), 3595–3602 (1995).
    [Crossref] [PubMed]

2015 (3)

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

2014 (2)

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

2013 (1)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

2012 (3)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
[Crossref]

2011 (3)

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5(10), 8202–8211 (2011).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

2010 (2)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (2)

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

2008 (3)

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

1998 (1)

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

1995 (2)

1986 (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Optica Acta 33(5), 607–619 (1986).
[Crossref]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Aizpurua, J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Badolato, A.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Barbour, R.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Biedermann, B.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Brongersma, M. L.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Chang, J. W.

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

Chang, S. H.

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Crozier, K.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Davé, D. P.

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

Denkova, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Dregely, D.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5(10), 8202–8211 (2011).
[Crossref] [PubMed]

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Fan, P.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Feng, J.

Feng, S. F.

S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Friend, R. H.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

García-Etxarri, A.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Gaylord, T. K.

Gerardot, B. D.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Giessen, H.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5(10), 8202–8211 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Govorov, A. O.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Grann, E. B.

Guo, H.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Habraken, S.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hao, Y. W.

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

Hao, Z. H.

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

Hentschel, M.

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5(10), 8202–8211 (2011).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Hodgkiss, J. M.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Holfeld, C. P.

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

Huang, J. B.

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

Huber, A. J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Inoue, M.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Käll, M.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Karrai, K.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Klar, P. J.

S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
[Crossref]

Köhler, K.

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

Kroner, M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Lagae, L.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Lee, K. L.

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

Leo, K.

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

Li, J. J.

S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
[Crossref]

Li, Y. Y.

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

Limonov, M. F.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Lion, Y.

López-Tejeira, F.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Löser, F.

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Optica Acta 33(5), 607–619 (1986).
[Crossref]

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Optica Acta 33(5), 607–619 (1986).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Moharam, M. G.

Moshchalkov, V. V.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Nau, D.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Nyagilo, J.

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Petroff, P. M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Pommet, D. A.

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Optica Acta 33(5), 607–619 (1986).
[Crossref]

Remi, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Renotte, Y.

Roose, S.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Rybin, M. V.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Samusev, K. B.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Seidl, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Shegai, T.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Steel, M. J.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Stijns, E.

Sudzius, M.

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

Sun, B.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Sun, B. Q.

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Vercruysse, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Verre, R.

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Wang, B.

Wang, Q. Q.

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

Wang, S.

Warburton, R. J.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Wei, P. K.

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

Whittaker, D. M.

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Wu, J. Q.

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

Wu, S. H.

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

Yang, D. J.

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

Yang, Z. J.

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Yushin, G.

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

Zhang, X. P.

S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
[Crossref]

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, C.

Zhou, L.

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

ACS Nano (1)

D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5(10), 8202–8211 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

X. P. Zhang, B. Q. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater. 20(23), 4455–4459 (2008).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

J. Nanophotonics (1)

S. F. Feng, X. P. Zhang, J. J. Li, and P. J. Klar, “Coupling between the plasmonic and photonic resonance modes in wave-guided metallic photonic crystals,” J. Nanophotonics 6(1), 063513 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (7)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12(12), 6459–6463 (2012).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

R. Verre, Z. J. Yang, T. Shegai, and M. Käll, “Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers,” Nano Lett. 15(3), 1952–1958 (2015).
[Crossref] [PubMed]

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Nat. Mater. (3)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics 3(5), 287–291 (2009).
[Crossref]

Nature (1)

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica Acta (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Optica Acta 33(5), 607–619 (1986).
[Crossref]

Phys. Rev. Lett. (3)

M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, “Fano resonance between Mie and Bragg scattering in photonic crystals,” Phys. Rev. Lett. 103(2), 023901 (2009).
[Crossref] [PubMed]

C. P. Holfeld, F. Löser, M. Sudzius, K. Leo, D. M. Whittaker, and K. Köhler, “Fano resonances in semiconductor superlattices,” Phys. Rev. Lett. 81(4), 874–877 (1998).
[Crossref]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Plasmonics (2)

S. H. Chang, J. Nyagilo, J. Q. Wu, Y. W. Hao, and D. P. Davé, “Optical fiber-based surface-enhanced Raman scattering sensor using Au nanovoid arrays,” Plasmonics 7(3), 501–508 (2012).
[Crossref]

D. J. Yang, Z. J. Yang, Y. Y. Li, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Tunable Fano resonance in rod-ring plasmonic nanocavities,” Plasmonics 10(2), 263–269 (2015).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

K. L. Lee, J. B. Huang, J. W. Chang, S. H. Wu, and P. K. Wei, “Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays,” Sci. Rep. 5, 8547 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic illustration for the principles of Fano coupling between waveguide mode and reduced transmission due to multifold diffraction processes. ❶, ❷, ❸, and ❹ denote four diffraction processes that are mainly involved in the interaction between the incident light beam and the waveguide grating, which are defined as: ❶ Λ(sinθi + sinθd1) = mλ1, ❷ Λ(sinθi-sinθd2) = -mλ2, ❸ Λ(sinθi + nWsinθd3) = mλ3, ❹ Λ(sinθi-nWsinθd4) = -mλ4, where Λ is the grating period, m is an integer defining the order of diffraction, λk denotes different wavelengths of light with k = 1, 2, 3, 4. Processes A and B are enhanced oppositely with enhancing the diffraction efficiency.
Fig. 2
Fig. 2 AFM and SEM (insets) images of the photoresist grating structures fabricated using interference lithography at different exposure times of (a) 30 s, (b) 25 s, and (c) 20 s. Lower panels: the AFM height distribution on the cross-section profile.
Fig. 3
Fig. 3 Angle-resolved tuning properties of the optical extinction spectra measured on the samples with a duty cycle of 19% [(a) and (b)], 30% [(c) and (d)], and 42% [(e) and (f)] for TE [(a), (c), and (e)] and TM [(b), (d), and (f)] polarizations. Inset of (a): absorption spectrum of the photoresist film.
Fig. 4
Fig. 4 Optical extinction spectra measured at normal incidence on samples with a duty cycle of η = 19%, 30%, and 42% for (a) TM and (b) TE polarization.

Metrics