Abstract

This paper reports the electrical tuning of a lasing in a liquid crystal (LC) sandwich structure. A dye-doped nematic LC (NLC) layer is sandwiched between two CLC layers to act as a phase retarder with the CLC layers acting as cavity mirrors, for the selective reflection of light in the photonic band with the same sense of helix handedness as that of the CLC layers. The transmittance spectrum of the sandwich cell provides a large range of modulation due to the wavelength dependent nature of phase retardation between the optical eigenmodes in the NLC layer. Lasing occurs at wavelengths corresponding to the maximum transmittance within the reflection band of the CLC layers. The application of voltage to the NLC layer makes it possible to shift the wavelengths of maximum transmittance, thereby tuning the wavelength of lasing. In these experiments, an applied voltage of 1.25 V was sufficient to shift the lasing peak wavelength by approximately 47 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi
Opt. Express 17(6) 4553-4558 (2009)

Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers

Yoshihito Hirota, Yan Ji, Francesca Serra, Ali R. Tajbakhsh, and Eugene M. Terentjev
Opt. Express 16(8) 5320-5331 (2008)

Lasing in chiral photonic liquid crystals and associated frequency tuning

Andy Y.-G. Fuh, Tsung-Hsien Lin, J.-H. Liu, and F.-C. Wu
Opt. Express 12(9) 1857-1863 (2004)

References

  • View by:
  • |
  • |
  • |

  1. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  3. K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
    [Crossref]
  4. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [Crossref] [PubMed]
  5. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
    [Crossref]
  6. S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
    [Crossref]
  7. P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
    [Crossref]
  8. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
    [Crossref]
  9. G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
    [Crossref]
  10. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
    [Crossref]
  11. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
    [Crossref] [PubMed]
  12. M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
    [Crossref]
  13. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
    [Crossref]
  14. S. J. Woltman and G. P. Crawford, “Tunable cholesteric liquid crystals lasers through in-plane switching,” Proc. SPIE 6487, 64870B (2007).
    [Crossref]
  15. M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).
  16. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
    [Crossref]
  17. O. V. Sakhno, Y. Gritsai, and J. Stumpe, “Distributed feedback lasing from electrically tunable dye-doped polymer-liquid crystal transmission gratings,” Laser Phys. Lett. 11(11), 115812 (2014).
    [Crossref]
  18. H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
    [Crossref] [PubMed]
  19. M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
    [Crossref]
  20. C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
    [Crossref]
  21. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
    [Crossref]
  22. J.-D. Lin, S.-Y. Huang, H.-S. Wang, S.-H. Lin, T.-S. Mo, C.-T. Horng, H.-C. Yeh, L.-J. Chen, H.-L. Lin, and C.-R. Lee, “Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell,” Opt. Express 22(24), 29479–29492 (2014).
    [Crossref] [PubMed]

2014 (2)

2010 (3)

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

2008 (1)

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

2007 (1)

S. J. Woltman and G. P. Crawford, “Tunable cholesteric liquid crystals lasers through in-plane switching,” Proc. SPIE 6487, 64870B (2007).
[Crossref]

2006 (4)

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[Crossref] [PubMed]

2005 (2)

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13(18), 7243–7249 (2005).
[Crossref] [PubMed]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

2003 (5)

P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

2002 (1)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[Crossref]

1998 (1)

1997 (1)

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Araoka, F.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

Barberi, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

Barnik, M. I.

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

Blinov, L. M.

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chen, L.-J.

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

Choi, H.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

Chung, I. J.

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

Coles, H. J.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Crawford, G. P.

S. J. Woltman and G. P. Crawford, “Tunable cholesteric liquid crystals lasers through in-plane switching,” Proc. SPIE 6487, 64870B (2007).
[Crossref]

Dai, H. T.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

Demir, H. V.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Doyle, C.

Fan, B.

Friend, R. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Fuh, A. Y. G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Funamoto, K.

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Genack, A.

P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
[Crossref]

Genack, A. Z.

Gritsai, Y.

O. V. Sakhno, Y. Gritsai, and J. Stumpe, “Distributed feedback lasing from electrically tunable dye-doped polymer-liquid crystal transmission gratings,” Laser Phys. Lett. 11(11), 115812 (2014).
[Crossref]

Hanelt, E.

P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
[Crossref]

Hatae, Y.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Hauck, G.

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

Horng, C.-T.

Huang, S.-Y.

Huang, Y.

Ishikawa, K.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Ji, W.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

Kim, J.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

Kopp, V.

P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
[Crossref]

Kopp, V. I.

Koswig, H. D.

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

Kurihara, S.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Lazarev, V. V.

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

Lee, C.-R.

Li, J.

Li, L.

Lin, H.-L.

Lin, J.-D.

Lin, S.-H.

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Luo, D.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[Crossref]

Mazzulla, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

Mo, T.-S.

Moritsugu, M.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Morris, S. M.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Mowatt, C.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Nishimura, S.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Nonaka, T.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Ogata, T.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Ozaki, M.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[Crossref]

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[Crossref]

Palto, S. P.

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

Park, B.

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Petriashvili, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

Sakhno, O. V.

O. V. Sakhno, Y. Gritsai, and J. Stumpe, “Distributed feedback lasing from electrically tunable dye-doped polymer-liquid crystal transmission gratings,” Laser Phys. Lett. 11(11), 115812 (2014).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Shibaev, P. V.

P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
[Crossref]

Shtykov, N. M.

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

Sikharulidze, D.

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

Song, M. H.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Stumpe, J.

O. V. Sakhno, Y. Gritsai, and J. Stumpe, “Distributed feedback lasing from electrically tunable dye-doped polymer-liquid crystal transmission gratings,” Laser Phys. Lett. 11(11), 115812 (2014).
[Crossref]

Sun, X. W.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

Takanishi, Y.

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Takezoe, H.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Tang, B.

Toyooka, T.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

Umanskii, B. A.

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

Vithana, H. K. M.

Wang, H.-S.

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

Wilkinson, T. D.

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Woltman, S. J.

S. J. Woltman and G. P. Crawford, “Tunable cholesteric liquid crystals lasers through in-plane switching,” Proc. SPIE 6487, 64870B (2007).
[Crossref]

Wu, J. W.

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

Wu, S. T.

Yang, H. Z.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

Yeh, H.-C.

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

Yoshino, K.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[Crossref]

Yoshioka, T.

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

Yu, H.

Zhou, Y.

Adv. Funct. Mater. (1)

M. H. Song, B. Park, S. Nishimura, T. Toyooka, I. J. Chung, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electrotunable non-reciprocal laser emission from a liquid-crystal photonic device,” Adv. Funct. Mater. 16(14), 1793–1798 (2006).
[Crossref]

Adv. Mater. (1)

H. Choi, J. Kim, S. Nishimura, T. Toyooka, F. Araoka, K. Ishikawa, J. W. Wu, and H. Takezoe, “Broadband cavity-mode lasing from dye-doped nematic liquid crystals sandwiched by broadband cholesteric liquid crystal bragg reflectors,” Adv. Mater. 22(24), 2680–2684 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 97(8), 081101 (2010).
[Crossref]

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y. G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88(6), 061122 (2006).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Phototunable lasing in dye-doped cholesteric liquid crystals,” Appl. Phys. Lett. 83(26), 5353–5355 (2003).
[Crossref]

S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, “Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups,” Appl. Phys. Lett. 88(10), 103121 (2006).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82(1), 16–18 (2003).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82(21), 3593 (2003).
[Crossref]

Cryst. Res. Technol. (1)

G. Chilaya, G. Hauck, H. D. Koswig, G. Petriashvili, and D. Sikharulidze, “Field induced increase of pitch in planar cholesteric liquid crystals,” Cryst. Res. Technol. 32(3), 401–405 (1997).
[Crossref]

J. Appl. Phys. (3)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

M. I. Barnik, L. M. Blinov, V. V. Lazarev, S. P. Palto, B. A. Umanskii, and N. M. Shtykov, “Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal,” J. Appl. Phys. 103(12), 123113 (2008).

C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, and H. J. Coles, “Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium,” J. Appl. Phys. 107(4), 043101 (2010).
[Crossref]

Jpn. J. Appl. Phys. (3)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electro-tunable defect mode in one-dimensional periodic structure containing nematic liquid crystal as a defect layer,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1482–L1484 (2002).
[Crossref]

M. H. Song, B. Park, Y. Takanishi, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films,” Jpn. J. Appl. Phys. 44(11), 8165–8167 (2005).
[Crossref]

K. Funamoto, M. Ozaki, and K. Yoshino, “Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal,” Jpn. J. Appl. Phys. 42(Part 2, No. 12B), L1523–L1525 (2003).
[Crossref]

Laser Phys. Lett. (1)

O. V. Sakhno, Y. Gritsai, and J. Stumpe, “Distributed feedback lasing from electrically tunable dye-doped polymer-liquid crystal transmission gratings,” Laser Phys. Lett. 11(11), 115812 (2014).
[Crossref]

Liq. Cryst. (1)

P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, “Lasing from chiral photonic band gap materials based on cholesteric glasses,” Liq. Cryst. 30(12), 1391–1400 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

S. J. Woltman and G. P. Crawford, “Tunable cholesteric liquid crystals lasers through in-plane switching,” Proc. SPIE 6487, 64870B (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure of sandwich cell. The symbol AC indicates an alternating-current power supply.
Fig. 2
Fig. 2 Transmittance spectra of (a) CLC layer and (b) sandwich cell. (c) Reflectance spectrum of sandwich cell.
Fig. 3
Fig. 3 Transmittance spectra of sandwich cell at various applied voltages. The inset shows the variations in effective birefringence Δn with applied voltage.
Fig. 4
Fig. 4 Normalized lasing emission and transmittance spectra of sandwich cell without applied voltage. The inset shows variations in the peak intensity of the lasing spectra and corresponding FWHM with pump energy.
Fig. 5
Fig. 5 Normalized lasing spectra at various applied voltages.
Fig. 6
Fig. 6 Images of lasing in the sandwich cell at applied voltages of (a) 0, (b) 1.05, (c) 1.1, (d) 1.15, (e) 1.2, and (f) 1.25 V. Pump energy was (a) 11, (b) 8, (c) 7, (d) 6, (e) 10, and (f) 12 μJ/pulse.
Fig. 7
Fig. 7 (a) Energy threshold at various lasing wavelengths. The corresponding applied voltages are indicated under the solid blue diamonds. (b) Normalized absorption spectrum and (c) normalized fluorescence emission spectrum of PM597 in HTW-114200.
Fig. 8
Fig. 8 Lasing emission spectra of the LCP and RCP components from the sandwich cell at 1.15 V. The inset presents a magnified graph.

Metrics