Abstract

Planar infrared visualization of species in flames is challenging due to the severe thermal radiation background and relatively weak fluorescence quantum yields from ro-vibration transitions. In this express, we report imaging of molecular species in a flame via an absorption-based coherent optical method, namely infrared polarization spectroscopy (IRPS). Single-shot, planar imaging of hydrogen fluoride (HF) has been achieved in a premixed CH4/O2 Bunsen flame, being seeded with a small amount of SF6. The HF molecule was excited through a rovibrational transition at around 2.5 µm, which belongs to the fundamental vibration band. High spatial resolution was guaranteed using an orthorgonal pump-probe geometry, and an effective suppression of thermal background emission was achieved owing to the coherent nature of the demonstrated two-dimensional IRPS. Other advantages, e.g. high temporal resolution and species-specificity, are also features of this laser-based technique, which make it suitable for imaging of non-fluorescent but infrared active gaseous molecules in harsh environments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of OH in flames by using polarization spectroscopy

K. Nyholm, R. Maier, C. G. Aminoff, and M. Kaivola
Appl. Opt. 32(6) 919-924 (1993)

Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy

Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth
Opt. Lett. 33(16) 1836-1838 (2008)

Simultaneous high-speed imaging of temperature, heat-release rate, and multi-species concentrations in turbulent jet flames

Naibo Jiang, Paul S. Hsu, Stephen W. Grib, and Sukesh Roy
Opt. Express 27(12) 17017-17026 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Dyer and D. R. Crosley, “Two-dimensional imaging of OH laser-induced fluorescence in a flame,” Opt. Lett. 7(8), 382–384 (1982).
    [Crossref] [PubMed]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
    [Crossref]
  4. B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
    [Crossref]
  5. J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
    [Crossref] [PubMed]
  6. J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
    [Crossref] [PubMed]
  7. J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Pror. Energy Combust. Sci. 37(5), 525–564 (2011).
    [Crossref]
  8. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
    [Crossref]
  9. Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth, “Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy,” Opt. Lett. 33(16), 1836–1838 (2008).
    [Crossref] [PubMed]
  10. S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in Flames,” Opt. Lett. 19(21), 1681–1683 (1994).
    [Crossref] [PubMed]
  11. B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
    [Crossref]
  12. D. J. Rakestraw, R. L. Farrow, and T. Dreier, “Two-dimensional imaging of OH in flames by degenerate four-wave mixing,” Opt. Lett. 15(12), 709–711 (1990).
    [Crossref] [PubMed]
  13. K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave-mixing and polarization spectroscopy,” Appl. Phys. B-Lasers O. 59, 37–43 (1994).
    [Crossref]
  14. P. Ewart, P. G. R. Smith, and R. B. Williams, “Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing,” Appl. Opt. 36(24), 5959–5968 (1997).
    [Crossref] [PubMed]
  15. K. Nyholm, R. Fritzon, and M. Aldén, “Two-Dimensional Imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18(19), 1672–1674 (1993).
    [Crossref] [PubMed]
  16. M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32(11), 1569–1571 (2007).
    [Crossref] [PubMed]
  17. A. Bohlin and C. J. Kliewer, “Diagnostic imaging in flames with instantaneous planar coherent Raman spectroscopy,” J. Phys. Chem. Lett. 5(7), 1243–1248 (2014).
    [Crossref] [PubMed]
  18. A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
    [Crossref] [PubMed]
  19. A. Bohlin and C. J. Kliewer, “Direct coherent Raman temperature imaging and wideband chemical detection in a hydrocarbon flat flame,” J. Phys. Chem. Lett. 6(4), 643–649 (2015).
    [Crossref] [PubMed]
  20. Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
    [Crossref]
  21. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
    [Crossref]
  22. Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
    [Crossref] [PubMed]
  23. Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
    [Crossref]
  24. Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
    [Crossref]
  25. Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
    [Crossref]
  26. Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
    [Crossref]
  27. Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
    [Crossref]
  28. The HITRAN database, at http://www.cfa.harvard.edu/hitran/ .
  29. D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
    [Crossref]
  30. C. P. Fenimore and G. W. Jones, “Decomposition of sulphur hexafluoride in flames by reaction with hydrogen atoms,” Combust. Flame 8(3), 231–234 (1964).
    [Crossref]
  31. J. Reppel and Z. T. Alwahabi, “A uniaxial gas model of the geometrical dependence of polarization spectroscopy,” J. Phys. D Appl. Phys. 34(17), 2670–2678 (2001).
    [Crossref]
  32. J. Reppel and Z. T. Alwahabi, “Orthogonal planar laser polarization spectroscopy,” Appl. Opt. 41(21), 4267–4272 (2002).
    [Crossref] [PubMed]
  33. Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
    [Crossref]
  34. L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
    [Crossref] [PubMed]
  35. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]

2015 (2)

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Direct coherent Raman temperature imaging and wideband chemical detection in a hydrocarbon flat flame,” J. Phys. Chem. Lett. 6(4), 643–649 (2015).
[Crossref] [PubMed]

2014 (3)

A. Bohlin and C. J. Kliewer, “Diagnostic imaging in flames with instantaneous planar coherent Raman spectroscopy,” J. Phys. Chem. Lett. 5(7), 1243–1248 (2014).
[Crossref] [PubMed]

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
[Crossref] [PubMed]

2013 (1)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

2012 (2)

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

2011 (5)

Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
[Crossref]

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
[Crossref]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Pror. Energy Combust. Sci. 37(5), 525–564 (2011).
[Crossref]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

2010 (3)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

2008 (1)

2007 (2)

M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32(11), 1569–1571 (2007).
[Crossref] [PubMed]

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

2004 (2)

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
[Crossref]

2002 (1)

2001 (1)

J. Reppel and Z. T. Alwahabi, “A uniaxial gas model of the geometrical dependence of polarization spectroscopy,” J. Phys. D Appl. Phys. 34(17), 2670–2678 (2001).
[Crossref]

2000 (1)

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

1997 (1)

1994 (2)

K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave-mixing and polarization spectroscopy,” Appl. Phys. B-Lasers O. 59, 37–43 (1994).
[Crossref]

S. Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, “Laser-induced thermal grating effects in Flames,” Opt. Lett. 19(21), 1681–1683 (1994).
[Crossref] [PubMed]

1993 (1)

1990 (1)

1982 (1)

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

1964 (1)

C. P. Fenimore and G. W. Jones, “Decomposition of sulphur hexafluoride in flames by reaction with hydrogen atoms,” Combust. Flame 8(3), 231–234 (1964).
[Crossref]

1961 (1)

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

Acquista, N.

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

Adams, E. C.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

Aldén, M.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
[Crossref] [PubMed]

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth, “Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy,” Opt. Lett. 33(16), 1836–1838 (2008).
[Crossref] [PubMed]

M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32(11), 1569–1571 (2007).
[Crossref] [PubMed]

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
[Crossref]

K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave-mixing and polarization spectroscopy,” Appl. Phys. B-Lasers O. 59, 37–43 (1994).
[Crossref]

K. Nyholm, R. Fritzon, and M. Aldén, “Two-Dimensional Imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18(19), 1672–1674 (1993).
[Crossref] [PubMed]

Alwahabi, Z. T.

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
[Crossref]

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

J. Reppel and Z. T. Alwahabi, “Orthogonal planar laser polarization spectroscopy,” Appl. Opt. 41(21), 4267–4272 (2002).
[Crossref] [PubMed]

J. Reppel and Z. T. Alwahabi, “A uniaxial gas model of the geometrical dependence of polarization spectroscopy,” J. Phys. D Appl. Phys. 34(17), 2670–2678 (2001).
[Crossref]

Ball, J. J.

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

Blomberg, S.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Bohlin, A.

A. Bohlin and C. J. Kliewer, “Direct coherent Raman temperature imaging and wideband chemical detection in a hydrocarbon flat flame,” J. Phys. Chem. Lett. 6(4), 643–649 (2015).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Diagnostic imaging in flames with instantaneous planar coherent Raman spectroscopy,” J. Phys. Chem. Lett. 5(7), 1243–1248 (2014).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Bood, J.

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Carlsson, P.-A.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

Crosley, D. R.

Dam, J. S.

Dreier, T.

Dyer, M. J.

Edwards, M.

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

Evertsson, J.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

Ewart, P.

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Pror. Energy Combust. Sci. 37(5), 525–564 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

P. Ewart, P. G. R. Smith, and R. B. Williams, “Imaging of trace species distributions by degenerate four-wave mixing: diffraction effects, spatial resolution, and image referencing,” Appl. Opt. 36(24), 5959–5968 (1997).
[Crossref] [PubMed]

Farrow, R. L.

Fenimore, C. P.

C. P. Fenimore and G. W. Jones, “Decomposition of sulphur hexafluoride in flames by reaction with hydrogen atoms,” Combust. Flame 8(3), 231–234 (1964).
[Crossref]

Forsman, J. W.

Försth, M.

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth, “Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy,” Opt. Lett. 33(16), 1836–1838 (2008).
[Crossref] [PubMed]

Fritzon, R.

K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave-mixing and polarization spectroscopy,” Appl. Phys. B-Lasers O. 59, 37–43 (1994).
[Crossref]

K. Nyholm, R. Fritzon, and M. Aldén, “Two-Dimensional Imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18(19), 1672–1674 (1993).
[Crossref] [PubMed]

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Gustafson, J.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

Hanson, R. K.

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

Høgstedt, L.

Hu, C.

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

Jones, G. W.

C. P. Fenimore and G. W. Jones, “Decomposition of sulphur hexafluoride in flames by reaction with hydrogen atoms,” Combust. Flame 8(3), 231–234 (1964).
[Crossref]

Kiefer, J.

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Pror. Energy Combust. Sci. 37(5), 525–564 (2011).
[Crossref]

Kirby, B. J.

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

Kliewer, C. J.

A. Bohlin and C. J. Kliewer, “Direct coherent Raman temperature imaging and wideband chemical detection in a hydrocarbon flat flame,” J. Phys. Chem. Lett. 6(4), 643–649 (2015).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Diagnostic imaging in flames with instantaneous planar coherent Raman spectroscopy,” J. Phys. Chem. Lett. 5(7), 1243–1248 (2014).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Konnov, A. A.

Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
[Crossref]

Li, B.

Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
[Crossref]

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth, “Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy,” Opt. Lett. 33(16), 1836–1838 (2008).
[Crossref] [PubMed]

Li, Z.

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
[Crossref] [PubMed]

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Li, Z. S.

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth, “Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy,” Opt. Lett. 33(16), 1836–1838 (2008).
[Crossref] [PubMed]

M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32(11), 1569–1571 (2007).
[Crossref] [PubMed]

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
[Crossref]

Lide, D. R.

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

Linvin, M.

M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32(11), 1569–1571 (2007).
[Crossref] [PubMed]

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

Lundgren, E.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Mann, D. E.

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

Nyholm, K.

K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave-mixing and polarization spectroscopy,” Appl. Phys. B-Lasers O. 59, 37–43 (1994).
[Crossref]

K. Nyholm, R. Fritzon, and M. Aldén, “Two-Dimensional Imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18(19), 1672–1674 (1993).
[Crossref] [PubMed]

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Paul, P. H.

Pedersen, C.

Rahn, L. A.

Rakestraw, D. J.

Reppel, J.

J. Reppel and Z. T. Alwahabi, “Orthogonal planar laser polarization spectroscopy,” Appl. Opt. 41(21), 4267–4272 (2002).
[Crossref] [PubMed]

J. Reppel and Z. T. Alwahabi, “A uniaxial gas model of the geometrical dependence of polarization spectroscopy,” J. Phys. D Appl. Phys. 34(17), 2670–2678 (2001).
[Crossref]

Richter, M.

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Rupinski, M.

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

Sahlberg, A.-L.

Smith, P. G. R.

Stone, R.

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

Sun, Z. W.

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
[Crossref]

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

Z. S. Li, Z. W. Sun, B. Li, M. Aldén, and M. Försth, “Spatially resolved trace detection of HCl in flames with mid-infrared polarization spectroscopy,” Opt. Lett. 33(16), 1836–1838 (2008).
[Crossref] [PubMed]

Thrush, B. A.

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

Tidemand-Lichtenberg, P.

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

Williams, B.

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

Williams, J.

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

Williams, R. B.

Williams, S.

Zare, R. N.

Zetterberg, J.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

M. Linvin, Z. S. Li, J. Zetterberg, and M. Aldén, “Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique,” Opt. Lett. 32(11), 1569–1571 (2007).
[Crossref] [PubMed]

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
[Crossref]

Zhou, J.

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B-Lasers O. (4)

K. Nyholm, R. Fritzon, and M. Aldén, “Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave-mixing and polarization spectroscopy,” Appl. Phys. B-Lasers O. 59, 37–43 (1994).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, M. Aldén, and P. Ewart, “Detection of C2H2 and HCl using mid-infrared degenerate four-wave mixing with stable beam alignment: towards practical in situ sensing of trace molecular species,” Appl. Phys. B-Lasers O. 98(2-3), 593–600 (2010).
[Crossref]

Z. S. Li, M. Rupinski, J. Zetterberg, Z. T. Alwahabi, and M. Aldén, “Detection of methane with mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 79(2), 135–138 (2004).
[Crossref]

Z. W. Sun, Z. S. Li, B. Li, Z. T. Alwahabi, and M. Aldén, “Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy,” Appl. Phys. B-Lasers O. 101(1-2), 423–432 (2010).
[Crossref]

Combust. Flame (3)

B. Williams, M. Edwards, R. Stone, J. Williams, and P. Ewart, “High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine,” Combust. Flame 161(1), 270–279 (2014).
[Crossref]

Z. W. Sun, Z. S. Li, A. A. Konnov, and M. Aldén, “Quantitative HCN measurements in CH4/N2O/O2/N2 flames using mid-infrared polarization spectroscopy,” Combust. Flame 158(10), 1898–1904 (2011).
[Crossref]

C. P. Fenimore and G. W. Jones, “Decomposition of sulphur hexafluoride in flames by reaction with hydrogen atoms,” Combust. Flame 8(3), 231–234 (1964).
[Crossref]

Fire Mater. (1)

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, “Mid-infrared polarization spectroscopy: A tool for in situ measurements of toxic gases in smoke-laden environments,” Fire Mater. 35(8), 527–537 (2011).
[Crossref]

J. Chem. Phys. (3)

A. Bohlin and C. J. Kliewer, “Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref] [PubMed]

Z. S. Li, C. Hu, J. Zetterberg, M. Linvin, and M. Aldén, “Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames,” J. Chem. Phys. 127(8), 084310 (2007).
[Crossref] [PubMed]

D. E. Mann, B. A. Thrush, D. R. Lide, J. J. Ball, and N. Acquista, “Spectroscpy of fluorine flame. I. Hydrogen-fluorine flame and the vibration-rotation emission spectrum of HF,” J. Chem. Phys. 34(2), 420–432 (1961).
[Crossref]

J. Phys. Chem. Lett. (2)

A. Bohlin and C. J. Kliewer, “Direct coherent Raman temperature imaging and wideband chemical detection in a hydrocarbon flat flame,” J. Phys. Chem. Lett. 6(4), 643–649 (2015).
[Crossref] [PubMed]

A. Bohlin and C. J. Kliewer, “Diagnostic imaging in flames with instantaneous planar coherent Raman spectroscopy,” J. Phys. Chem. Lett. 5(7), 1243–1248 (2014).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

J. Reppel and Z. T. Alwahabi, “A uniaxial gas model of the geometrical dependence of polarization spectroscopy,” J. Phys. D Appl. Phys. 34(17), 2670–2678 (2001).
[Crossref]

J. Raman Spectrosc. (1)

Z. W. Sun, Z. S. Li, B. Li, and M. Aldén, “Flame temperature diagnostics with water lines using mid-infrared degenerate four-wave mixing,” J. Raman Spectrosc. 42(10), 1828–1835 (2011).
[Crossref]

Nat. Commun. (1)

J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E. C. Adams, P.-A. Carlsson, M. Aldén, and E. Lundgren, “Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence,” Nat. Commun. 6, 7076 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Opt. Commun. (1)

Z. T. Alwahabi, Z. S. Li, J. Zetterberg, and M. Aldén, “Infrared polarization spectroscopy of CO2 at atmospheric pressure,” Opt. Commun. 233(4-6), 373–381 (2004).
[Crossref]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36(20), 1170–1173 (1976).
[Crossref]

Proc. Combust. Inst. (2)

M. Aldén, J. Bood, Z. Li, and M. Richter, “Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques,” Proc. Combust. Inst. 33(1), 69–97 (2011).
[Crossref]

B. J. Kirby and R. K. Hanson, “Imaging of CO and CO2 using infrared planar laser-induced fluorescence,” Proc. Combust. Inst. 28(1), 253–259 (2000).
[Crossref]

Pror. Energy Combust. Sci. (2)

J. Kiefer and P. Ewart, “Laser diagnostics and minor species detection in combustion using resonant four-wave mixing,” Pror. Energy Combust. Sci. 37(5), 525–564 (2011).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Pror. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

J. Zetterberg, S. Blomberg, J. Gustafson, Z. W. Sun, Z. S. Li, E. Lundgren, and M. Aldén, “An in situ set up for the detection of CO2 from catalytic CO oxidation by using planar laser-induced fluorescence,” Rev. Sci. Instrum. 83(5), 053104 (2012).
[Crossref] [PubMed]

Other (2)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

The HITRAN database, at http://www.cfa.harvard.edu/hitran/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 IRPS excitation scans in CH4/air flames; (a) without and (b) with SF6 seeding and (c) a simulated HF IRPS spectrum. The rotational lines R(J) are assigned, where J = 1 to 3 for the (1-0) band and J = 7 to 10 for the (2-1) band. A zoom-in of the R(9) line from the hot band is shown for clearance.
Fig. 2
Fig. 2 Schematic setup of the two-dimensional infrared polarization spectroscopy. BS, beam splitter; P, polarizer; CL, cylindrical lens; SL, spherical lens; D, beam dump and A, aperture. Polarizations of laser beams are indicated by the green arrows and points.
Fig. 3
Fig. 3 Image of a scale plastic plate recorded with the present 2D IRPS setup to reveal the spatial resolution. The plate was inserted into the probe beam at the measurement point. The line width of grids on the plate is 130 μm and a scale of 1 mm is shown as well.
Fig. 4
Fig. 4 (a) Photograph of the CH4/O2 Bunsen flame and (b) a single-shot image of HF using 2D IRPS with the 90 degree pumping geometry. The broken lines box visualizes the region of the IRPS image. (c) the cross-section of the image (b) at the height indicated by the dash arrow. The cross-section was averaged over a height of 100 μm, i.e. 3 pixels,
Fig. 5
Fig. 5 (a) Photograph of the Bunsen flame laterally foreshortened by sin(41°). (b) Single shot image recorded at the 41° pumping geometry by exciting the R(3) line of the (1-0) band and (c) by exciting the R(9) line of the (2-1) band.

Metrics