Abstract

We propose and experimentally demonstrate a simple approach to realize a phase-sensitive correlation optical time-domain reflectometer (OTDR) suitable for detection and localization of dynamic perturbations along a single-mode optical fiber. It is based on the quantum phase fluctuations of a coherent light emitted by a telecom DFB diode laser. Truly random probe signals are generated by an interferometer with the optical path difference exceeding the coherence length of the laser light. Speckle-like OTDR traces were obtained by calculating cross-correlation functions between the probe light and the light intensity signals returned back from the sensing fiber. Perturbations are detected and localized by monitoring time variations of correlation amplitude along the fiber length. Results of proof-of-concept experimental testing are presented using an array of ultra-low-reflectivity fiber Bragg gratings as weak reflectors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser

Rodolfo Martínez Manuel, M. G. Shlyagin, and S. V. Miridonov
Opt. Express 16(25) 20666-20675 (2008)

Interferometric optical time-domain reflectometry for distributed optical-fiber sensing

Sergey V. Shatalin, Vladimir N. Treschikov, and Alan J. Rogers
Appl. Opt. 37(24) 5600-5604 (1998)

Distributed optical fiber vibration sensor based on Sagnac interference in conjunction with OTDR

Chao Pan, Xiaorui Liu, Hui Zhu, Xuekang Shan, and Xiaohan Sun
Opt. Express 25(17) 20056-20070 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
    [Crossref]
  2. J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
    [Crossref]
  3. E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1992).
    [Crossref]
  4. S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” J. Lightwave Technol. 19(2), 205–213 (2001).
    [Crossref]
  5. R. M. Manuel, M. G. Shlyagin, and S. V. Miridonov, “Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser,” Opt. Express 16(25), 20666–20675 (2008).
    [Crossref] [PubMed]
  6. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  7. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  8. F. Peng, H. Wu, X.-H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  9. H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
    [Crossref]
  10. H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett. 38(6), 872–874 (2013).
    [Crossref] [PubMed]
  11. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39(20), 5866–5869 (2014).
    [Crossref] [PubMed]
  12. Z. N. Wang, J. Li, M. Q. Fan, L. Zhang, F. Peng, H. Wu, J. J. Zeng, Y. Zhou, and Y. J. Rao, “Phase-sensitive optical time-domain reflectometry with Brillouin amplification,” Opt. Lett. 39(15), 4313–4316 (2014).
    [Crossref] [PubMed]
  13. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  14. Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
    [Crossref]
  15. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
    [Crossref]
  16. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [Crossref]
  17. D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
    [Crossref]
  18. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
    [Crossref]
  19. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  20. K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
    [Crossref]
  21. M. Zoboli and P. Bassi, “High spatial resolution OTDR attenuation measurements by a correlation technique,” Appl. Opt. 22(23), 3680–3681 (1983).
    [Crossref] [PubMed]
  22. Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  23. Z. N. Wang, M. Q. Fan, L. Zhang, H. Wu, D. V. Churkin, Y. Li, X. Y. Qian, and Y. J. Rao, “Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source,” Opt. Express 23(12), 15514–15520 (2015).
    [Crossref] [PubMed]
  24. M. G. Shlyagin and A. Arias, “Simple CW correlation OTDR for interrogation of multiplexed low-reflectivity FBG sensors,” Proc. SPIE 7753, 77538V (2011).
    [Crossref]
  25. M. G. Shlyagin, A. Arias, and R. Manuel Martinez, “Distributed detection and localization of multiple dynamic perturbations using coherent correlation OTDR,” Proc. SPIE 9157, 91576Z (2014).
  26. P. B. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” J. Quant. Electron. 20(4), 343–349 (1984).
    [Crossref]
  27. B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol. 4(9), 1334–1351 (1986).
    [Crossref]
  28. H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
    [Crossref] [PubMed]
  29. F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, and H.-K. Lo, “Ultrafast quantum random number generation based on quantum phase fluctuations,” Opt. Express 20(11), 12366–12377 (2012).
    [Crossref] [PubMed]
  30. H. D. Hinkley and C. Freed, “Direct observation of the Lorentzian line shape as limited by quantum phase noise in a laser above threshold,” Phys. Rev. Lett. 23(6), 277–280 (1969).
    [Crossref]

2015 (1)

2014 (6)

2013 (3)

2012 (1)

2011 (2)

M. G. Shlyagin and A. Arias, “Simple CW correlation OTDR for interrogation of multiplexed low-reflectivity FBG sensors,” Proc. SPIE 7753, 77538V (2011).
[Crossref]

J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
[Crossref]

2010 (2)

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
[Crossref] [PubMed]

2008 (2)

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

R. M. Manuel, M. G. Shlyagin, and S. V. Miridonov, “Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser,” Opt. Express 16(25), 20666–20675 (2008).
[Crossref] [PubMed]

2005 (1)

2001 (1)

1994 (1)

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

1992 (1)

E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1992).
[Crossref]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

1988 (1)

J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
[Crossref]

1986 (1)

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol. 4(9), 1334–1351 (1986).
[Crossref]

1985 (1)

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

1984 (1)

P. B. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” J. Quant. Electron. 20(4), 343–349 (1984).
[Crossref]

1983 (1)

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

1980 (1)

K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
[Crossref]

1969 (1)

H. D. Hinkley and C. Freed, “Direct observation of the Lorentzian line shape as limited by quantum phase noise in a laser above threshold,” Phys. Rev. Lett. 23(6), 277–280 (1969).
[Crossref]

Arbel, D.

Arias, A.

M. G. Shlyagin, A. Arias, and R. Manuel Martinez, “Distributed detection and localization of multiple dynamic perturbations using coherent correlation OTDR,” Proc. SPIE 9157, 91576Z (2014).

M. G. Shlyagin and A. Arias, “Simple CW correlation OTDR for interrogation of multiplexed low-reflectivity FBG sensors,” Proc. SPIE 7753, 77538V (2011).
[Crossref]

Bao, X.

Bassi, P.

Brady, K. R. C.

Bucaro, J. A.

J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
[Crossref]

Chen, L.

Choi, K. N.

Churkin, D. V.

Cole, J. H.

J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
[Crossref]

Corredera, P.

Culshaw, B.

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

Dakin, J. P.

S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” J. Lightwave Technol. 19(2), 205–213 (2001).
[Crossref]

J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
[Crossref]

Dandridge, A.

J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
[Crossref]

Debarge, G.

P. B. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” J. Quant. Electron. 20(4), 343–349 (1984).
[Crossref]

Diao, D.

Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Eyal, A.

Fan, M. Q.

Filograno, M. L.

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Frazão, O.

Freed, C.

H. D. Hinkley and C. Freed, “Direct observation of the Lorentzian line shape as limited by quantum phase noise in a laser above threshold,” Phys. Rev. Lett. 23(6), 277–280 (1969).
[Crossref]

Furukawa, S.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Gallion, P. B.

P. B. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” J. Quant. Electron. 20(4), 343–349 (1984).
[Crossref]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

González-Herráez, M.

Guo, H.

H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
[Crossref] [PubMed]

Hashimoto, K.

K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
[Crossref]

He, Q.

Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
[Crossref] [PubMed]

Hinkley, H. D.

H. D. Hinkley and C. Freed, “Direct observation of the Lorentzian line shape as limited by quantum phase noise in a laser above threshold,” Phys. Rev. Lett. 23(6), 277–280 (1969).
[Crossref]

Izumita, H.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Jia, X.-H.

Juarez, J. C.

Kirkendall, C. K.

J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
[Crossref]

Koyamada, Y.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Li, J.

Li, Y.

Liu, Y.

H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
[Crossref] [PubMed]

Lo, H.-K.

Lu, Y.

Ma, X.

Maier, E. W.

Manuel, R. M.

Manuel Martinez, R.

M. G. Shlyagin, A. Arias, and R. Manuel Martinez, “Distributed detection and localization of multiple dynamic perturbations using coherent correlation OTDR,” Proc. SPIE 9157, 91576Z (2014).

Martin-Lopez, S.

Martins, H. F.

Miridonov, S. V.

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Moslehi, B.

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol. 4(9), 1334–1351 (1986).
[Crossref]

Nagaki, Y.

K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
[Crossref]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Okada, K.

K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
[Crossref]

Pearce, D. A.

J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
[Crossref]

Peng, F.

Peng, Z. P.

Qi, B.

Qian, X. Y.

Rao, Y. J.

Russell, S. J.

Salgado, P.

Sankawa, I.

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

Shibata, T.

K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
[Crossref]

Shlyagin, M. G.

M. G. Shlyagin, A. Arias, and R. Manuel Martinez, “Distributed detection and localization of multiple dynamic perturbations using coherent correlation OTDR,” Proc. SPIE 9157, 91576Z (2014).

M. G. Shlyagin and A. Arias, “Simple CW correlation OTDR for interrogation of multiplexed low-reflectivity FBG sensors,” Proc. SPIE 7753, 77538V (2011).
[Crossref]

R. M. Manuel, M. G. Shlyagin, and S. V. Miridonov, “Location of a time-varying disturbance using an array of identical fiber-optic interferometers interrogated by CW DFB laser,” Opt. Express 16(25), 20666–20675 (2008).
[Crossref] [PubMed]

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Strong, A.

J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
[Crossref]

Tang, W.

H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
[Crossref] [PubMed]

Tao Zhu, T.

Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Taylor, H. F.

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

Udd, E.

E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1992).
[Crossref]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Uttam, D.

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

Wade, C. A.

J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
[Crossref]

Wang, A.

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B.

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, Y.

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, Z. N.

Wei, W.

H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
[Crossref] [PubMed]

Wu, H.

Xiao, X.

T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
[Crossref] [PubMed]

Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Xu, F.

Xu, H.

Zeng, J. J.

Zhang, B.

Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

Zhang, L.

Zheng, H.

Zhou, Y.

Zhu, T.

Zoboli, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[Crossref]

Electron. Lett. (1)

K. Okada, K. Hashimoto, T. Shibata, and Y. Nagaki, “Optical cable fault location using correlation technique,” Electron. Lett. 16(16), 629–630 (1980).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Q. He, T. Tao Zhu, X. Xiao, B. Zhang, D. Diao, and X. Bao, “All fiber distributed vibration sensing using modulated time-difference pulses,” IEEE Photon. Technol. Lett. 25(20), 1955–1957 (2013).
[Crossref]

J. Lightwave Technol. (8)

H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazão, and M. González-Herráez, “Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over >100 km,” J. Lightwave Technol. 32(8), 1510–1518 (2014).
[Crossref]

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[Crossref]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[Crossref]

S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer,” J. Lightwave Technol. 19(2), 205–213 (2001).
[Crossref]

H. Izumita, Y. Koyamada, S. Furukawa, and I. Sankawa, “The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena,” J. Lightwave Technol. 12(7), 1230–1238 (1994).
[Crossref]

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol. 4(9), 1334–1351 (1986).
[Crossref]

J. Quant. Electron. (1)

P. B. Gallion and G. Debarge, “Quantum phase noise and field correlation in single frequency semiconductor laser systems,” J. Quant. Electron. 20(4), 343–349 (1984).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051137 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

H. D. Hinkley and C. Freed, “Direct observation of the Lorentzian line shape as limited by quantum phase noise in a laser above threshold,” Phys. Rev. Lett. 23(6), 277–280 (1969).
[Crossref]

Proc. SPIE (5)

M. G. Shlyagin and A. Arias, “Simple CW correlation OTDR for interrogation of multiplexed low-reflectivity FBG sensors,” Proc. SPIE 7753, 77538V (2011).
[Crossref]

M. G. Shlyagin, A. Arias, and R. Manuel Martinez, “Distributed detection and localization of multiple dynamic perturbations using coherent correlation OTDR,” Proc. SPIE 9157, 91576Z (2014).

J. H. Cole, J. A. Bucaro, C. K. Kirkendall, and A. Dandridge, “The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications,” Proc. SPIE 7753, 775303 (2011).
[Crossref]

J. P. Dakin, D. A. Pearce, C. A. Wade, and A. Strong, “A novel distributed optical fibre sensing system enabling location of disturbances in a Sagnac loop interferometer,” Proc. SPIE 838, 325–328 (1988).
[Crossref]

E. Udd, “Sagnac distributed sensor concepts,” Proc. SPIE 1586, 46–52 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Evaluation of the standard deviation (a) and average light intensity (b) at the output of the unbalanced interferometer in presence of the laser quantum phase noise. Delay time is presented in terms of coherence time of the laser light.
Fig. 2
Fig. 2 Experimental set-up of the phase-sensitive correlation OTDR. (A: AC-coupled trans-impedance amplifiers; ADC: 2-channel Analog-to-Digital Convertor PC board).
Fig. 3
Fig. 3 (a) An example of the reference signal captured with AC-coupled photodetector; (b) Auto-correlation function calculated for the reference signal (inset: the central part of the autocorrelation function).
Fig. 4
Fig. 4 Experimental cross-correlation trace for optical fiber with an array of 12 equally spaced FBGs in between 1015 and 1070 meters.
Fig. 5
Fig. 5 Time variation of cross-correlation amplitudes measured at 4 different positions along the fiber(traces 2-5); (a) without an external mechanical perturbation; (b) a perturbation was applied at the distance of 1016 meters. Trace 1represents the background level of the system noise, trace 2: measured at the distance of 500m; 3: at distance 710 m; 4: at distance 1050 m; 5: at distance 1016m where perturbation was applied. An array of FBG interferometers were formed in the fiber section from 1015 to 1070 meters).
Fig. 6
Fig. 6 Waterfall plot for the full length of the fiber. An amplitude of the cross-correlation is presented in pseudo-colors; the red color corresponds to maximum signal amplitude. Green arrows at the right indicate positions where traces 1-5 shown in Fig. 5(b) were measured. Red arrows at the bottom indicate some of the moments when, as we suppose, the laser central optical frequency suddenly slightly changed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ¯ =2[ 1+ e | Δt | τ c cosθ ],
σ I 2 =2[ 1 e 2| Δt | τ c ( 1+cos2θ )+ e 4| Δt | τ c cos2θ ],

Metrics