Abstract

We investigate three approaches to low perturbation gratings to achieve lower linewidths in filters and semiconductor lasers. The three designs, which are labeled post, sampled, and high order, are DUV lithography compatible and were fabricated on 90 nm thick Si3N4 stripwaveguides. Reflection and transmission spectra measurements show coupling constant, kappa, values ranging from 0.23 cm‑1 to 1.2 cm‑1 with FWHM values of 74 pm to 116 pm. We discuss the tradeoffs between these geometries in terms of lowest linewidth, apodization, and curved waveguide layout. These results enable long cavity single mode lasers with kHz level linewidths on a monolithic platform.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sidewall gratings in ultra-low-loss Si3N4 planar waveguides

Michael Belt, Jock Bovington, Renan Moreira, Jared F. Bauters, Martijn J. R. Heck, Jonathon S. Barton, John E. Bowers, and Daniel J. Blumenthal
Opt. Express 21(1) 1181-1188 (2013)

Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform

Michael Belt and Daniel J. Blumenthal
Opt. Express 22(9) 10655-10660 (2014)

Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler

Wesley D. Sacher, Ying Huang, Liang Ding, Benjamin J. F. Taylor, Hasitha Jayatilleka, Guo-Qiang Lo, and Joyce K. S. Poon
Opt. Express 22(9) 10938-10947 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  2. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
    [Crossref] [PubMed]
  3. C. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986).
    [Crossref]
  4. M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
    [Crossref]
  5. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).
  6. M. Poulin, Y. Painchaud, M. Aubé, S. Ayotte, C. Latrasse, G. Brochu, F. Pelletier, M. Morin, M. Guy, and J.-F. Cliche, “Ultra-narrowband fiber Bragg gratings for laser linewidth reduction and RF filtering,” in Proc. of SPIE 7579, A. V. Kudryashov, A. H. Paxton, and V. S. Ilchenko, eds. (2010), 75791C.
  7. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
    [Crossref]
  8. W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
    [Crossref]
  9. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
    [Crossref]
  10. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
    [Crossref]
  11. Z. Chen, J. Flueckiger, X. Wang, F. Zhang, H. Yun, Z. Lu, M. Caverley, Y. Wang, N. A. F. Jaeger, and L. Chrostowski, “Spiral Bragg grating waveguides for TM mode silicon photonics,” Opt. Express 23(19), 25295–25307 (2015).
    [Crossref] [PubMed]
  12. M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181 (2013).
    [Crossref] [PubMed]
  13. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett. 35(20), 3477–3479 (2010).
    [Crossref] [PubMed]
  14. A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25(10), 2096–2105 (1989).
    [Crossref]
  15. L. A. Weller-Brophy and D. G. Hall, “Analysis of waveguide gratings: application of Rouard’s method,” J. Opt. Soc. Am. A 2(6), 863–871 (1985).
    [Crossref]
  16. M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-loss Si3N4 platform,” in Optical Fiber Communication Conference (OSA, 2015), paper Tu2C.7.

2015 (1)

2014 (2)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

2013 (1)

2011 (1)

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

2010 (1)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1994 (2)

M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
[Crossref]

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

1989 (1)

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25(10), 2096–2105 (1989).
[Crossref]

1986 (1)

C. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986).
[Crossref]

1985 (1)

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

Ayache, M.

Barton, J. S.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181 (2013).
[Crossref] [PubMed]

Belt, M.

Blumenthal, D. J.

Bovington, J.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181 (2013).
[Crossref] [PubMed]

Brattain, M. A.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Caverley, M.

Chen, Z.

Chinone, N.

M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
[Crossref]

Chrostowski, L.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Erdogan, T.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Fainman, Y.

Flueckiger, J.

Hall, D. G.

Hardy, A.

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25(10), 2096–2105 (1989).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

M. Belt, J. Bovington, R. Moreira, J. F. Bauters, M. J. R. Heck, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Sidewall gratings in ultra-low-loss Si3N4 planar waveguides,” Opt. Express 21(1), 1181 (2013).
[Crossref] [PubMed]

Henry, C.

C. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Jaeger, N. A. F.

Juodawlkis, P. W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Khajavikhan, M.

Lemaire, P. J.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Logan, R. A.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Loh, W.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Lu, Z.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Missaggia, L. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Mizrahi, V.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Moreira, R.

Morton, P. A.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

Nezhad, M. P.

O’Donnell, F. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Okai, M.

M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
[Crossref]

Phillips, M. R.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Plant, J. J.

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

Presby, H. M.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Sergent, A. M.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Sipe, J. E.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Streifer, W.

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25(10), 2096–2105 (1989).
[Crossref]

Suzuki, M.

M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
[Crossref]

Tan, D. T. H.

Tanbun-Ek, T.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Taniwatari, T.

M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
[Crossref]

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Wecht, K. W.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Welch, D. F.

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25(10), 2096–2105 (1989).
[Crossref]

Weller-Brophy, L. A.

Woodward, S. L.

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

Yun, H.

Zamek, S.

Zhang, F.

Appl. Phys. Lett. (1)

P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. J. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64(20), 2634–2636 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977).
[Crossref]

A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25(10), 2096–2105 (1989).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photonics Technol. Lett. 23(14), 974–976 (2011).
[Crossref]

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

C. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4(3), 298–311 (1986).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

M. Okai, M. Suzuki, T. Taniwatari, and N. Chinone, “Corrugation-pitch-modulated distributed feedback lasers with ultranarrow spectral Linewidth,” Jpn. J. Appl. Phys. 33(Part 1, No. 5A), 2563–2570 (1994).
[Crossref]

Laser Photonics Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photonics Rev. 8(5), 667–686 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111(8), 2879–2884 (2014).
[Crossref] [PubMed]

Other (3)

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (John Wiley & Sons, Inc., 2012).

M. Poulin, Y. Painchaud, M. Aubé, S. Ayotte, C. Latrasse, G. Brochu, F. Pelletier, M. Morin, M. Guy, and J.-F. Cliche, “Ultra-narrowband fiber Bragg gratings for laser linewidth reduction and RF filtering,” in Proc. of SPIE 7579, A. V. Kudryashov, A. H. Paxton, and V. S. Ilchenko, eds. (2010), 75791C.

M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-loss Si3N4 platform,” in Optical Fiber Communication Conference (OSA, 2015), paper Tu2C.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Layout and parameter definition of the grating geometries studied in this paper. wo: nominal waveguide width, Δ: Bragg period, g: gap, Δw: waveguide width perturbation, T: sampling period, N: number of grating periods in one sample, and m: order of the grating. b) SEM of a completed post grating device.
Fig. 2
Fig. 2 Comparison of spectra for the three grating geometries. Post grating: wo = 3.0 µm, g = 0.8 µm; sampled grating: wo = 2.8 µm, N = 11, Δw = 0.25 µm; high order grating: wo = 2.8 µm, m = 3, square shape, Δw = 0.2 µm.
Fig. 3
Fig. 3 Post grating spectra vs. gap for two waveguide widths.
Fig. 4
Fig. 4 Results and fit of the reflection and transmission of a sampled grating device with 15 grating teeth/burst and Δw = 0.25 µm. The asymmetries appear due to Fabry-Perot effects of the chip facets, and are accounted for in the matrix model of the gratings.
Fig. 5
Fig. 5 Overview of the peak reflection and FWHM vs. κvalues for the 7.8 mm long Bragg gratings. The measured results show slightly higher reflection and lower FWHM than ideal linear gratings due to the small amount of facet reflection.
Fig. 6
Fig. 6 Results and fit of the reflection and transmission with identical parameters for a 2 mm long grating with a λ/4-shift in the center. The transmission floor in the experiment and theory is due to a finite polarization extinction ratio, which is fit to be 17 dB.

Tables (1)

Tables Icon

Table 1 Results of the post, sampled, and high order gratings after removing system and facet coupling losses.

Metrics