Abstract

Light scattering detection of a single particle is significant to both theoretical developments and application progresses of particle scattering. In this work, a new method employing the polydimethylsiloxane microfluidic catcher with self-regulation was developed to detect the light scattering of an individual micro particle (20.42, 23.75, and 31.10 μm) in a wide angular range. This system can rapidly (<2 min) immobilize single particles without aggregations and continuously analyze its light scattering ranging from 2° to 162°. The high success ratio of the capture, good agreement with the anticipation, and moderate time and cost make this method a promising candidate in single-particle-scattering applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

Observation of whispering gallery modes in elastic light scattering from microdroplets optically trapped in a microfluidic channel

S. Anand, M. Eryürek, Y. Karadag, A. Erten, A. Serpengüzel, A. Jonáš, and A. Kiraz
J. Opt. Soc. Am. B 33(7) 1349-1354 (2016)

Experiments on light scattering and extinction by small, micrometer-sized aggregates of spheres

Martin Schnaiter and Gerhard Wurm
Appl. Opt. 41(6) 1175-1180 (2002)

References

  • View by:
  • |
  • |
  • |

  1. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST‐100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
    [Crossref]
  2. A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
    [Crossref]
  3. X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
    [Crossref] [PubMed]
  4. B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, “Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements,” Opt. Express 14(25), 12473–12484 (2006).
    [Crossref] [PubMed]
  5. M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
    [Crossref]
  6. W. H. Slade and E. S. Boss, “Calibrated near-forward volume scattering function obtained from the LISST particle sizer,” Opt. Express 14(8), 3602–3615 (2006).
    [Crossref] [PubMed]
  7. R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
    [Crossref]
  8. L. Yu, Y. Sheng, and A. Chiou, “Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers,” Opt. Express 21(10), 12174–12184 (2013).
    [Crossref] [PubMed]
  9. M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
    [Crossref]
  10. C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
    [Crossref]
  11. J. S. Jaffe, “A tomographic approach to inverse Mie particle characterization from scattered light,” Opt. Express 15(19), 12217–12229 (2007).
    [Crossref] [PubMed]
  12. W. Li and J. S. Jaffe, “Sizing homogeneous spherical particles from intensity-only angular scatter,” J. Opt. Soc. Am. A 27(2), 151–158 (2010).
    [Crossref] [PubMed]
  13. D. T. Phillips, P. J. Wyatt, and R. M. Berkman, “Measurement of the Lorenz-Mie scattering of a single particle: polystyrene latex,” J. Colloid Interface Sci. 34(1), 159–162 (1970).
    [Crossref]
  14. P. J. Wyatt and D. T. Phillips, “A new instrument for the study of individual aerosol particles,” J. Colloid Interface Sci. 39(1), 125–135 (1972).
    [Crossref]
  15. E. J. Davis and P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1(3), 337–350 (1982).
    [Crossref]
  16. D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
    [Crossref]
  17. E. J. Davis, “A history of single aerosol particle levitation,” Aerosol Sci. Technol. 26(3), 212–254 (1997).
    [Crossref]
  18. F. Zheng, X. Qu, and E. Davis, “An octopole electrodynamic balance for three-dimensional microparticle control,” Rev. Sci. Instrum. 72(8), 3380–3385 (2001).
    [Crossref]
  19. D. T. Phillips and P. J. Wyatt, “Single-Particle Light-Scattering Measurement: Photochemical Aerosols and Atmospheric Particulates,” Appl. Opt. 11(9), 2082–2087 (1972).
    [Crossref] [PubMed]
  20. W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, (International Society for Optics and Photonics, 1991), 279–287.
  21. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [Crossref] [PubMed]
  22. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
    [Crossref] [PubMed]
  23. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  24. D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21(3), 20–26 (2010).
    [Crossref]
  25. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium,” Opt. Lett. 36(18), 3554–3556 (2011).
    [Crossref] [PubMed]
  26. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level,” Biomed. Opt. Express 2(7), 1803–1814 (2011).
    [Crossref] [PubMed]
  27. M. Kinnunen, J. Tuorila, T. Haapalainen, A. Karmenyan, V. Tuchin, and R. Myllylä, “Optical tweezers-assisted measurements of elastic light scattering,” in Saratov Fall Meeting 2013, (International Society for Optics and Photonics, 2014), 90310A–90310A–90319.
  28. B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
    [Crossref] [PubMed]
  29. C.-P. Jen, J.-H. Hsiao, and N. A. Maslov, “Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells,” Sensors (Basel) 12(1), 347–358 (2012).
    [PubMed]
  30. A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
    [Crossref] [PubMed]
  31. J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
    [Crossref] [PubMed]
  32. K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
    [Crossref] [PubMed]
  33. Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
    [Crossref] [PubMed]
  34. M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells,” Appl. Phys. Lett. 96(22), 224101 (2010).
    [Crossref] [PubMed]
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  36. H. Bruus, Theoretical Nicrofluidics (Oxford University 2010).
  37. F. M. White and I. Corfield, Viscous Fluid Flow (McGraw-Hill New York, 2006), Vol. 3.
  38. E. S. Asmolov, “The inertial lift on a small particle in a weak-shear parabolic flow,” Phys. Fluids 14(1), 15–28 (2002).
    [Crossref]
  39. A. Karimi, S. Yazdi, and A. M. Ardekani, “Hydrodynamic mechanisms of cell and particle trapping in microfluidics,” Biomicrofluidics 7(2), 021501 (2013).
    [Crossref] [PubMed]
  40. J. Matas, J. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59(1), 59–70 (2004).
    [Crossref]
  41. H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21(16), 18697–18711 (2013).
    [Crossref] [PubMed]
  42. K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
    [Crossref] [PubMed]

2015 (1)

X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
[Crossref] [PubMed]

2014 (1)

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

2013 (4)

L. Yu, Y. Sheng, and A. Chiou, “Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers,” Opt. Express 21(10), 12174–12184 (2013).
[Crossref] [PubMed]

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

A. Karimi, S. Yazdi, and A. M. Ardekani, “Hydrodynamic mechanisms of cell and particle trapping in microfluidics,” Biomicrofluidics 7(2), 021501 (2013).
[Crossref] [PubMed]

H. Tan, R. Doerffer, T. Oishi, and A. Tanaka, “A new approach to measure the volume scattering function,” Opt. Express 21(16), 18697–18711 (2013).
[Crossref] [PubMed]

2012 (7)

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

C.-P. Jen, J.-H. Hsiao, and N. A. Maslov, “Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells,” Sensors (Basel) 12(1), 347–358 (2012).
[PubMed]

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
[Crossref] [PubMed]

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
[Crossref] [PubMed]

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21(3), 20–26 (2010).
[Crossref]

M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells,” Appl. Phys. Lett. 96(22), 224101 (2010).
[Crossref] [PubMed]

W. Li and J. S. Jaffe, “Sizing homogeneous spherical particles from intensity-only angular scatter,” J. Opt. Soc. Am. A 27(2), 151–158 (2010).
[Crossref] [PubMed]

2008 (1)

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

2007 (2)

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST‐100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[Crossref]

J. S. Jaffe, “A tomographic approach to inverse Mie particle characterization from scattered light,” Opt. Express 15(19), 12217–12229 (2007).
[Crossref] [PubMed]

2006 (3)

2004 (3)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

J. Matas, J. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59(1), 59–70 (2004).
[Crossref]

2002 (1)

E. S. Asmolov, “The inertial lift on a small particle in a weak-shear parabolic flow,” Phys. Fluids 14(1), 15–28 (2002).
[Crossref]

2001 (1)

F. Zheng, X. Qu, and E. Davis, “An octopole electrodynamic balance for three-dimensional microparticle control,” Rev. Sci. Instrum. 72(8), 3380–3385 (2001).
[Crossref]

1997 (1)

E. J. Davis, “A history of single aerosol particle levitation,” Aerosol Sci. Technol. 26(3), 212–254 (1997).
[Crossref]

1995 (1)

D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

1982 (1)

E. J. Davis and P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1(3), 337–350 (1982).
[Crossref]

1972 (2)

P. J. Wyatt and D. T. Phillips, “A new instrument for the study of individual aerosol particles,” J. Colloid Interface Sci. 39(1), 125–135 (1972).
[Crossref]

D. T. Phillips and P. J. Wyatt, “Single-Particle Light-Scattering Measurement: Photochemical Aerosols and Atmospheric Particulates,” Appl. Opt. 11(9), 2082–2087 (1972).
[Crossref] [PubMed]

1970 (1)

D. T. Phillips, P. J. Wyatt, and R. M. Berkman, “Measurement of the Lorenz-Mie scattering of a single particle: polystyrene latex,” J. Colloid Interface Sci. 34(1), 159–162 (1970).
[Crossref]

Alados-Arboledas, L.

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

Anh, N. H.

X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
[Crossref] [PubMed]

Ardekani, A. M.

A. Karimi, S. Yazdi, and A. M. Ardekani, “Hydrodynamic mechanisms of cell and particle trapping in microfluidics,” Biomicrofluidics 7(2), 021501 (2013).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

Asmolov, E. S.

E. S. Asmolov, “The inertial lift on a small particle in a weak-shear parabolic flow,” Phys. Fluids 14(1), 15–28 (2002).
[Crossref]

Azevedo, L.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST‐100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[Crossref]

Balch, W. M.

R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Baltensperger, U.

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Berkman, R. M.

D. T. Phillips, P. J. Wyatt, and R. M. Berkman, “Measurement of the Lorenz-Mie scattering of a single particle: polystyrene latex,” J. Colloid Interface Sci. 34(1), 159–162 (1970).
[Crossref]

Boss, E.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST‐100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[Crossref]

Boss, E. S.

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Chachisvilis, M.

B. Shao, J. S. Jaffe, M. Chachisvilis, and S. C. Esener, “Angular resolved light scattering for discriminating among marine picoplankton: modeling and experimental measurements,” Opt. Express 14(25), 12473–12484 (2006).
[Crossref] [PubMed]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Chiou, A.

Chung, K.

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Concannon, B.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Davis, E.

F. Zheng, X. Qu, and E. Davis, “An octopole electrodynamic balance for three-dimensional microparticle control,” Rev. Sci. Instrum. 72(8), 3380–3385 (2001).
[Crossref]

Davis, E. J.

E. J. Davis, “A history of single aerosol particle levitation,” Aerosol Sci. Technol. 26(3), 212–254 (1997).
[Crossref]

E. J. Davis and P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1(3), 337–350 (1982).
[Crossref]

Ding, C.

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

Dittrich, P. S.

K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
[Crossref] [PubMed]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Doerffer, R.

Dommen, J.

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Esener, S. C.

Evander, M.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
[Crossref] [PubMed]

Eyer, K.

K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
[Crossref] [PubMed]

Fasching, G.

D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
[Crossref]

Frey, O.

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

Gong, E.

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Guazzelli, E.

J. Matas, J. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59(1), 59–70 (2004).
[Crossref]

Guillard, R. R.

R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Guo, C.

Gysel, M.

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Hanke, C.

K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
[Crossref] [PubMed]

Hierlemann, A.

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

Ho, C.-Y.

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

Howell, P. B.

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

Hsiao, J.-H.

C.-P. Jen, J.-H. Hsiao, and N. A. Maslov, “Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells,” Sensors (Basel) 12(1), 347–358 (2012).
[PubMed]

Jaffe, J. S.

Jen, C.-P.

C.-P. Jen, J.-H. Hsiao, and N. A. Maslov, “Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells,” Sensors (Basel) 12(1), 347–358 (2012).
[PubMed]

Johnson-Chavarria, E. M.

M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells,” Appl. Phys. Lett. 96(22), 224101 (2010).
[Crossref] [PubMed]

Kamgar-Parsi, K.

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

Kane, T. J.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Kanodia, J. S.

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Karimi, A.

A. Karimi, S. Yazdi, and A. M. Ardekani, “Hydrodynamic mechanisms of cell and particle trapping in microfluidics,” Biomicrofluidics 7(2), 021501 (2013).
[Crossref] [PubMed]

Karmenyan, A.

Karp-Boss, L.

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST‐100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[Crossref]

Kauppila, A.

Kim, Y.

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Kinnunen, M.

Kuhn, P.

K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
[Crossref] [PubMed]

Laborde, M.

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Laurell, T.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
[Crossref] [PubMed]

Laux, A.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Lawson, L.

D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
[Crossref]

Lenshof, A.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
[Crossref] [PubMed]

Li, W.

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

W. Li and J. S. Jaffe, “Sizing homogeneous spherical particles from intensity-only angular scatter,” J. Opt. Soc. Am. A 27(2), 151–158 (2010).
[Crossref] [PubMed]

Ligler, F. S.

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

Lin, B.-S.

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

Liu, Z.

Lu, H.

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Lyamani, H.

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

Ma, X.

X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
[Crossref] [PubMed]

Maloney, D.

D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
[Crossref]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Maslov, N. A.

C.-P. Jen, J.-H. Hsiao, and N. A. Maslov, “Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells,” Sensors (Basel) 12(1), 347–358 (2012).
[PubMed]

Matas, J.

J. Matas, J. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59(1), 59–70 (2004).
[Crossref]

McGloin, D.

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21(3), 20–26 (2010).
[Crossref]

Mertes, P.

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Messmer, A.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Monazam, E.

D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
[Crossref]

Morris, J.

J. Matas, J. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59(1), 59–70 (2004).
[Crossref]

Mullen, L.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Myllylä, R.

Nilsson, J.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
[Crossref] [PubMed]

Oishi, T.

Olmo, F. J.

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

Ottoz, D. S.

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

Phillips, D. T.

D. T. Phillips and P. J. Wyatt, “Single-Particle Light-Scattering Measurement: Photochemical Aerosols and Atmospheric Particulates,” Appl. Opt. 11(9), 2082–2087 (1972).
[Crossref] [PubMed]

P. J. Wyatt and D. T. Phillips, “A new instrument for the study of individual aerosol particles,” J. Colloid Interface Sci. 39(1), 125–135 (1972).
[Crossref]

D. T. Phillips, P. J. Wyatt, and R. M. Berkman, “Measurement of the Lorenz-Mie scattering of a single particle: polystyrene latex,” J. Colloid Interface Sci. 34(1), 159–162 (1970).
[Crossref]

Prentice, J.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Qu, X.

F. Zheng, X. Qu, and E. Davis, “An octopole electrodynamic balance for three-dimensional microparticle control,” Rev. Sci. Instrum. 72(8), 3380–3385 (2001).
[Crossref]

Quirantes, A.

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

Ravindran, P.

E. J. Davis and P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1(3), 337–350 (1982).
[Crossref]

Reid, J. P.

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21(3), 20–26 (2010).
[Crossref]

Rudolf, F.

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

Schroeder, C. M.

M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells,” Appl. Phys. Lett. 96(22), 224101 (2010).
[Crossref] [PubMed]

Shao, B.

Sheng, Y.

Shields, A. R.

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

Shvartsman, S. Y.

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Sim, S. J.

X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
[Crossref] [PubMed]

Slade, W. H.

Tan, D.

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

Tan, H.

Tanaka, A.

Tanyeri, M.

M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells,” Appl. Phys. Lett. 96(22), 224101 (2010).
[Crossref] [PubMed]

Truong, P. L.

X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
[Crossref] [PubMed]

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

Valenzuela, A.

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

Verbarg, J.

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

Wang, H.-Y.

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Wyatt, P. J.

P. J. Wyatt and D. T. Phillips, “A new instrument for the study of individual aerosol particles,” J. Colloid Interface Sci. 39(1), 125–135 (1972).
[Crossref]

D. T. Phillips and P. J. Wyatt, “Single-Particle Light-Scattering Measurement: Photochemical Aerosols and Atmospheric Particulates,” Appl. Opt. 11(9), 2082–2087 (1972).
[Crossref] [PubMed]

D. T. Phillips, P. J. Wyatt, and R. M. Berkman, “Measurement of the Lorenz-Mie scattering of a single particle: polystyrene latex,” J. Colloid Interface Sci. 34(1), 159–162 (1970).
[Crossref]

Xia, M.

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

Yang, H.-Y.

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

Yang, J.

Yang, K.

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

Yang, Y.-C.

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

Yazdi, S.

A. Karimi, S. Yazdi, and A. M. Ardekani, “Hydrodynamic mechanisms of cell and particle trapping in microfluidics,” Biomicrofluidics 7(2), 021501 (2013).
[Crossref] [PubMed]

Yu, L.

Yuan, L.

Zheng, F.

F. Zheng, X. Qu, and E. Davis, “An octopole electrodynamic balance for three-dimensional microparticle control,” Rev. Sci. Instrum. 72(8), 3380–3385 (2001).
[Crossref]

Zhu, Z.

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

Zieger, P.

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Zugger, M. E.

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Aerosol Sci. Technol. (2)

E. J. Davis and P. Ravindran, “Single particle light scattering measurements using the electrodynamic balance,” Aerosol Sci. Technol. 1(3), 337–350 (1982).
[Crossref]

E. J. Davis, “A history of single aerosol particle levitation,” Aerosol Sci. Technol. 26(3), 212–254 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells,” Appl. Phys. Lett. 96(22), 224101 (2010).
[Crossref] [PubMed]

Atmos. Meas. Tech. (1)

M. Laborde, P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel, “Sensitivity of the Single Particle Soot Photometer to different black carbon types,” Atmos. Meas. Tech. 5(5), 1031–1043 (2012).
[Crossref]

Biomed. Opt. Express (1)

Biomicrofluidics (1)

A. Karimi, S. Yazdi, and A. M. Ardekani, “Hydrodynamic mechanisms of cell and particle trapping in microfluidics,” Biomicrofluidics 7(2), 021501 (2013).
[Crossref] [PubMed]

Biophys. J. (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[Crossref] [PubMed]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic Light Scattering from Single Cells: Orientational Dynamics in Optical Trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

X. Ma, P. L. Truong, N. H. Anh, and S. J. Sim, “Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein,” Biosens. Bioelectron. 67, 59–65 (2015).
[Crossref] [PubMed]

EPL (1)

C. Ding, K. Yang, W. Li, M. Xia, and D. Tan, “An improved particle-sizing approach based on optical diffraction tomography,” EPL 102(4), 44003 (2013).
[Crossref]

J. Colloid Interface Sci. (2)

D. T. Phillips, P. J. Wyatt, and R. M. Berkman, “Measurement of the Lorenz-Mie scattering of a single particle: polystyrene latex,” J. Colloid Interface Sci. 34(1), 159–162 (1970).
[Crossref]

P. J. Wyatt and D. T. Phillips, “A new instrument for the study of individual aerosol particles,” J. Colloid Interface Sci. 39(1), 125–135 (1972).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Plankton Res. (1)

R. D. Vaillancourt, C. W. Brown, R. R. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26(2), 191–212 (2004).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. Quirantes, F. J. Olmo, H. Lyamani, A. Valenzuela, and L. Alados-Arboledas, “Investigation of fine and coarse aerosol contributions to the total aerosol light scattering: Shape effects and concentration profiling by Raman lidar measurements,” J. Quant. Spectrosc. Radiat. Transf. 113(18), 2593–2600 (2012).
[Crossref]

Lab Chip (4)

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, “Acoustofluidics 5: Building microfluidic acoustic resonators,” Lab Chip 12(4), 684–695 (2012).
[Crossref] [PubMed]

J. Verbarg, K. Kamgar-Parsi, A. R. Shields, P. B. Howell, and F. S. Ligler, “Spinning magnetic trap for automated microfluidic assay systems,” Lab Chip 12(10), 1793–1799 (2012).
[Crossref] [PubMed]

K. Eyer, P. Kuhn, C. Hanke, and P. S. Dittrich, “A microchamber array for single cell isolation and analysis of intracellular biomolecules,” Lab Chip 12(4), 765–772 (2012).
[Crossref] [PubMed]

Z. Zhu, O. Frey, D. S. Ottoz, F. Rudolf, and A. Hierlemann, “Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells,” Lab Chip 12(5), 906–915 (2012).
[Crossref] [PubMed]

Limnol. Oceanogr. (1)

M. E. Zugger, A. Messmer, T. J. Kane, J. Prentice, B. Concannon, A. Laux, and L. Mullen, “Optical scattering properties of phytoplankton: Measurements and comparison of various species at scattering angles between 1° and 170°,” Limnol. Oceanogr. 53(1), 381–386 (2008).
[Crossref]

Limnol. Oceanogr. Methods (1)

L. Karp-Boss, L. Azevedo, and E. Boss, “LISST‐100 measurements of phytoplankton size distribution: Evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods 5, 396–406 (2007).
[Crossref]

Nat. Methods (1)

K. Chung, Y. Kim, J. S. Kanodia, E. Gong, S. Y. Shvartsman, and H. Lu, “A microfluidic array for large-scale ordering and orientation of embryos,” Nat. Methods 8(2), 171–176 (2011).
[Crossref] [PubMed]

Oil Gas Sci. Technol. (1)

J. Matas, J. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59(1), 59–70 (2004).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Photonics News (1)

D. McGloin and J. P. Reid, “Forty years of optical manipulation,” Opt. Photonics News 21(3), 20–26 (2010).
[Crossref]

Phys. Fluids (1)

E. S. Asmolov, “The inertial lift on a small particle in a weak-shear parabolic flow,” Phys. Fluids 14(1), 15–28 (2002).
[Crossref]

Rev. Sci. Instrum. (2)

F. Zheng, X. Qu, and E. Davis, “An octopole electrodynamic balance for three-dimensional microparticle control,” Rev. Sci. Instrum. 72(8), 3380–3385 (2001).
[Crossref]

D. Maloney, L. Lawson, G. Fasching, and E. Monazam, “Measurement and dynamic simulation of particle trajectories in an electrodynamic balance: Characterization of particle drag force coefficient/mass ratios,” Rev. Sci. Instrum. 66(6), 3615–3622 (1995).
[Crossref]

Sensors (Basel) (2)

B.-S. Lin, Y.-C. Yang, C.-Y. Ho, H.-Y. Yang, and H.-Y. Wang, “A PDMS-Based Cylindrical Hybrid lens for Enhanced Fluorescence Detection in Microfluidic Systems,” Sensors (Basel) 14(2), 2967–2980 (2014).
[Crossref] [PubMed]

C.-P. Jen, J.-H. Hsiao, and N. A. Maslov, “Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells,” Sensors (Basel) 12(1), 347–358 (2012).
[PubMed]

Other (5)

M. Kinnunen, J. Tuorila, T. Haapalainen, A. Karmenyan, V. Tuchin, and R. Myllylä, “Optical tweezers-assisted measurements of elastic light scattering,” in Saratov Fall Meeting 2013, (International Society for Optics and Photonics, 2014), 90310A–90310A–90319.

W. H. Wright, G. J. Sonek, Y. Numajiri, and M. W. Berns, “Measurement of light scattering from cells using an inverted infrared optical trap,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, (International Society for Optics and Photonics, 1991), 279–287.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).

H. Bruus, Theoretical Nicrofluidics (Oxford University 2010).

F. M. White and I. Corfield, Viscous Fluid Flow (McGraw-Hill New York, 2006), Vol. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Theoretical scattering calculation of different particle sizes. (a) 720 dots for 180° (0.25° resolution); (b) 180 dots for 180° (1° resolution).
Fig. 2
Fig. 2 Inner structure (top view), equivalent module, and simulation of the hydrodynamic networks. (a) Geometry of the hydrodynamic networks. (b) Equivalent resistance module before (left) and after (right) the capture of the single particle. (c) Streamline distribution of the empty (left) and occupied (right) hydrodynamic channel. The red streamline is the flow that enters the trapping unit (Qtrap and Qleakage). The blue streamline represents the flow that passes the ring channel (Qring). (d) Flow distribution vs. channel height and ring diameter. The left subpanel is the throughput ratio of the trapping flow and the ring flow before the trapping, whereas the right subpanel represents the rate of leakage flow and ring flow after the capture.
Fig. 3
Fig. 3 System construction and work flow.
Fig. 4
Fig. 4 Performance of microfluidic chip. (a) Capture of the microsphere with self-regulation. (b) Index-matching process at 0, 5, and 10 min. The scale bar is 40 μm.
Fig. 5
Fig. 5 Experimental distribution of the light scattering (3 trials) of a single microsphere versus the numerical calculation based on Mie theory.
Fig. 6
Fig. 6 Scattering measurements with 20.42, 23.75, and 31.10 µm microsphere versus the theoretical calculation based on Mie theory.

Tables (1)

Tables Icon

Table 1 Parameters of the exponential fitting to both theoretical and experimental curves.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( r , θ ) = λ 2 I 0 4 π r 2 | S ( θ ) | 2
S ( θ ) = n = 1 2 n + 1 n ( n + 1 ) [ a n τ n ( cos θ ) + b n π n ( cos θ ) ] a n = ψ n ( α ) ψ n ' ( m α ) m ψ n ( m α ) ψ n ' ( α ) ξ n ( α ) ψ n ' ( m α ) m ψ n ( m α ) ξ n ' ( α ) b n = m ψ n ( α ) ψ n ' ( m α ) ψ n ( m α ) ψ n ' ( α ) m ξ n ( α ) ψ n ' ( m α ) ψ n ( m α ) ξ n ' ( α ) π n ( cos θ ) = P n ( 1 ) ( cos θ ) sin θ τ n ( cos θ ) = d P n ( 1 ) ( cos θ ) d θ
Q = 8 h 3 w 3 μ L ( h + w ) g ( α ) Δ P

Metrics