Abstract

Sphere-surface distance and exposure dose effects on lithography resolution of microsphere lens array are studied. A transparent gap is introduced between photoresist film and polystyrene microspheres to adjust light distribution of photoresist surface. The pores size on the photoresist film varies when the gap thickness is changed. By optimization gap thickness and exposure dose, sub-100 nm surface patterning array is achieved for sphere of 2.06 µm diameter and optical wavelength λ of 400 nm theoretically and experimentally. Furthermore, when smaller polystyrene sphere (1.25 µm diameter) is chosen, spot width of 35 nm is realized by numerical calculation. This nano-fabrication method is simple, low-cost and high-efficiency, which can provide opportunities to make a variety of nano-devices, such as biosensors and nano-antennas.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-organized nanoparticle photolithography for two-dimensional patterning of organic light emitting diodes

Getachew T. Ayenew, Alexis P. A. Fischer, Chia-Hua Chan, Chii-Chang Chen, Mahmoud Chakaroun, Jeanne Solard, Lung-Han Peng, and Azzedine Boudrioua
Opt. Express 22(S6) A1619-A1633 (2014)

Plasmonic nano lithography with a high scan speed contact probe

Yongwoo Kim, Seok Kim, Howon Jung, Eungman Lee, and Jae W. Hahn
Opt. Express 17(22) 19476-19485 (2009)

Patterning flood illumination with microlens arrays

Ming-Hsien Wu, Kateri E. Paul, and George M. Whitesides
Appl. Opt. 41(13) 2575-2585 (2002)

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
    [Crossref]
  2. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
    [Crossref] [PubMed]
  3. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  4. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
    [Crossref]
  5. X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
    [Crossref]
  6. X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
    [Crossref]
  7. J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
    [Crossref]
  8. Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
    [Crossref]
  9. S. Sun and G. J. Leggett, “Generation of Nanostructures by Scanning Near-Field Photolithography of Self-Assembled Monolayers and Wet Chemical Etching,” Nano Lett. 2(11), 1223–1227 (2002).
    [Crossref]
  10. Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
    [Crossref]
  11. N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 881–884 (2008).
    [Crossref]
  12. X. F. Xu, E. X. Jin, and S. M. Uppuluri, “Enhancement of optical transmission through planar nanoapertures in a metal film,” Proc. SPIE 230, 230–243 (2004).
  13. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
  14. K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
    [Crossref]
  15. A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
    [Crossref]
  16. A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
    [Crossref] [PubMed]
  17. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
    [Crossref]
  18. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
    [Crossref]
  19. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
    [Crossref]
  20. R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89(22), 223113 (2006).
    [Crossref]
  21. Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
    [Crossref]
  22. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
    [Crossref] [PubMed]
  23. D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
    [Crossref]
  24. B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).
  25. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  26. C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
    [Crossref]
  27. C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
    [Crossref] [PubMed]
  28. W. Inami and Y. Kawata, “Analysis of the scattered light distribution of a tightly focused laser beam by a particle near a substrate,” J. Appl. Phys. 89(11), 5876–5880 (2001).
    [Crossref]
  29. D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
    [Crossref] [PubMed]
  30. N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
    [Crossref]
  31. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
    [Crossref] [PubMed]

2015 (4)

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
[Crossref] [PubMed]

2012 (1)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

2011 (2)

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

2010 (1)

A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
[Crossref]

2008 (3)

N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 881–884 (2008).
[Crossref]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).

C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
[Crossref]

2007 (2)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

2006 (1)

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89(22), 223113 (2006).
[Crossref]

2005 (2)

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

2004 (4)

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

X. F. Xu, E. X. Jin, and S. M. Uppuluri, “Enhancement of optical transmission through planar nanoapertures in a metal film,” Proc. SPIE 230, 230–243 (2004).

2003 (1)

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

2002 (3)

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

S. Sun and G. J. Leggett, “Generation of Nanostructures by Scanning Near-Field Photolithography of Self-Assembled Monolayers and Wet Chemical Etching,” Nano Lett. 2(11), 1223–1227 (2002).
[Crossref]

2001 (2)

W. Inami and Y. Kawata, “Analysis of the scattered light distribution of a tightly focused laser beam by a particle near a substrate,” J. Appl. Phys. 89(11), 5876–5880 (2001).
[Crossref]

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

1999 (2)

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

1992 (1)

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
[Crossref]

Arnold, C. B.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).

Arnold, N.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

Backman, V.

Baird, R. J.

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89(22), 223113 (2006).
[Crossref]

Barbastathis, G.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Bäuerle, D.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Bertsch, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Boarino, L.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Bonakdar, A.

Boneberg, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Brown, R. L.

Chang, C. H.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Charmasson, L.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

Chen, G. X.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Chen, Z.

Choi, H. J.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Chong, T. C.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

De Leo, N.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Delaporte, P.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

Denk, R.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Denkov, N. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Dexheimer, E.

Egami, C.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Fathipour, V.

Gao, G.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Gao, H.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Gao, P.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Grojo, D.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

Halfpenny, D. R.

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

Hesse, W. R.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Hong, M. H.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Huang, S. M.

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Inami, W.

W. Inami and Y. Kawata, “Analysis of the scattered light distribution of a tightly focused laser beam by a particle near a substrate,” J. Appl. Phys. 89(11), 5876–5880 (2001).
[Crossref]

Ishihara, T.

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Ivanov, I. B.

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Jang, S. J.

Jin, E. X.

X. F. Xu, E. X. Jin, and S. M. Uppuluri, “Enhancement of optical transmission through planar nanoapertures in a metal film,” Proc. SPIE 230, 230–243 (2004).

Jin, J.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Kane, D. M.

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Kawata, Y.

W. Inami and Y. Kawata, “Analysis of the scattered light distribution of a tightly focused laser beam by a particle near a substrate,” J. Appl. Phys. 89(11), 5876–5880 (2001).
[Crossref]

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Kim, J. G.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Kralchevski, P. A.

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Ladouceur, H. D.

C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
[Crossref]

Laracuente, A.

C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
[Crossref]

Laus, M.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Law, Y. Z.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Leggett, G. J.

S. Sun and G. J. Leggett, “Generation of Nanostructures by Scanning Near-Field Photolithography of Self-Assembled Monolayers and Wet Chemical Etching,” Nano Lett. 2(11), 1223–1227 (2002).
[Crossref]

Leiderer, P.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Li, L.

A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
[Crossref]

Li, X.

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
[Crossref] [PubMed]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Lin, Y.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Liu, K.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Lu, Y. F.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Luk’yanchuk, B. S.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Luo, J.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Luo, X.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004).
[Crossref] [PubMed]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Luo, X. G.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Luo, Y.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Ma, X.

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Mohseni, H.

A. Bonakdar, M. Rezaei, R. L. Brown, V. Fathipour, E. Dexheimer, S. J. Jang, and H. Mohseni, “Deep-UV microsphere projection lithography,” Opt. Lett. 40(11), 2537–2540 (2015).
[Crossref] [PubMed]

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Mosbacher, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Münzer, H. J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Murphy-DuBay, N.

N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 881–884 (2008).
[Crossref]

Nagayama, K.

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Nakamura, O.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Okamoto, N.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Othon, C. M.

C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
[Crossref]

Panzarasa, G.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Pena, A.

A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
[Crossref]

Pereira, A.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

Piglmayer, K.

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

Piparia, R.

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89(22), 223113 (2006).
[Crossref]

Pu, M.

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Rezaei, M.

Ringeisen, B. R.

C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
[Crossref]

Rocci, R.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Rothe, E. W.

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89(22), 223113 (2006).
[Crossref]

Sentis, M.

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

Siddiqui, M.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Song, W. D.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Sparnacci, K.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Sugihara, O.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Sun, S.

S. Sun and G. J. Leggett, “Generation of Nanostructures by Scanning Near-Field Photolithography of Self-Assembled Monolayers and Wet Chemical Etching,” Nano Lett. 2(11), 1223–1227 (2002).
[Crossref]

Taflove, A.

Tan, L. S.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Tian, L.

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

Tsuchimori, M.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Uppuluri, S. M.

X. F. Xu, E. X. Jin, and S. M. Uppuluri, “Enhancement of optical transmission through planar nanoapertures in a metal film,” Proc. SPIE 230, 230–243 (2004).

Velev, O. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Wang, C.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Wang, L.

N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 881–884 (2008).
[Crossref]

Wang, Q. F.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Wang, W. J.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

Wang, Y.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Wang, Z. B.

A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

Watanabe, O.

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Whitehead, D.

A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
[Crossref]

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

Xie, Q.

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Xu, X.

N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 881–884 (2008).
[Crossref]

Xu, X. F.

X. F. Xu, E. X. Jin, and S. M. Uppuluri, “Enhancement of optical transmission through planar nanoapertures in a metal film,” Proc. SPIE 230, 230–243 (2004).

Yao, N.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Yoshimura, H.

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Yu, H.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Zeng, B.

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Zhao, C.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

Zhao, Z.

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Zheng, Y. W.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Zimmermann, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, “Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens,” Appl. Phys. Lett. 106(9), 093110 (2015).
[Crossref]

K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Appl. Phys. Lett. 80(25), 4693–4695 (2002).
[Crossref]

R. Piparia, E. W. Rothe, and R. J. Baird, “Nanobumps on silicon created with polystyrene spheres and 248 or 308 nm laser pulses,” Appl. Phys. Lett. 89(22), 223113 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (4)

B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77(2), 209–215 (2003).

A. Pena, Z. B. Wang, D. Whitehead, and L. Li, “Direct writing of micro/nano-scale patterns by means of particle lens arrays scanned by a focused diode pumped N d: YVO4 laser,” Appl. Phys., A Mater. Sci. Process. 101(2), 287–295 (2010).
[Crossref]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[Crossref]

N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys., A Mater. Sci. Process. 93(4), 881–884 (2008).
[Crossref]

Appl. Surf. Sci. (1)

C. M. Othon, A. Laracuente, H. D. Ladouceur, and B. R. Ringeisen, “Sub-micron parallel laser direct-write,” Appl. Surf. Sci. 255(5), 3407–3413 (2008).
[Crossref]

Arch. Mikroskop. Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikroskop. Anat. 9(1), 413–418 (1873).
[Crossref]

Int. J. Antennas Propag. (1)

X. Luo, M. Pu, X. Ma, and X. Li, “Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices,” Int. J. Antennas Propag. 2015, 204127 (2015).
[Crossref]

J. Appl. Phys. (4)

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

D. R. Halfpenny and D. M. Kane, “A quantitative analysis of single pulse ultraviolet dry laser cleaning,” J. Appl. Phys. 86(12), 6641–6646 (1999).
[Crossref]

W. Inami and Y. Kawata, “Analysis of the scattered light distribution of a tightly focused laser beam by a particle near a substrate,” J. Appl. Phys. 89(11), 5876–5880 (2001).
[Crossref]

J. Microsc. (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

D. Grojo, L. Charmasson, A. Pereira, M. Sentis, and P. Delaporte, “Monitoring photonic nanojets from microsphere arrays by femtosecond laser ablation of thin films,” J. Nanosci. Nanotechnol. 11(10), 9129–9135 (2011).
[Crossref] [PubMed]

Langmuir (1)

N. D. Denkov, O. D. Velev, P. A. Kralchevski, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 3183–3190 (1992).
[Crossref]

Nano Lett. (2)

C. H. Chang, L. Tian, W. R. Hesse, H. Gao, H. J. Choi, J. G. Kim, M. Siddiqui, and G. Barbastathis, “From two-dimensional colloidal self-assembly to three-dimensional nanolithography,” Nano Lett. 11(6), 2533–2537 (2011).
[Crossref] [PubMed]

S. Sun and G. J. Leggett, “Generation of Nanostructures by Scanning Near-Field Photolithography of Self-Assembled Monolayers and Wet Chemical Etching,” Nano Lett. 2(11), 1223–1227 (2002).
[Crossref]

Nanotechnology (2)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology 18(48), 485302 (2007).
[Crossref]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).

Opt. Commun. (1)

Y. Kawata, C. Egami, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Non-optically probing near-field microscopy,” Opt. Commun. 161(1-3), 6–12 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

X. F. Xu, E. X. Jin, and S. M. Uppuluri, “Enhancement of optical transmission through planar nanoapertures in a metal film,” Proc. SPIE 230, 230–243 (2004).

Sci. China Phys. Mech. Astron. (1)

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Sensor Actuat. A (1)

Y. Lin, M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, “Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,” Sensor Actuat. A 133(2), 311–316 (2007).
[Crossref]

Other (1)

J. Luo, B. Zeng, C. Wang, P. Gao, K. Liu, M. Pu, J. Jin, Z. Zhao, X. Li, H. Yu, and X. Luo, “Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography,” Nanoscale (2015), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sketch of simulated microsphere lens array lithography structure.
Fig. 2
Fig. 2 Light field distribution of PR film surface at different SDs. The distance is 10, 30, 50 and 70 nm for (a), (b), (c) and (d), respectively.
Fig. 3
Fig. 3 (a) Light fluence distribution of the spot and (b) the relation of SD and spot width (the blue lines represent simulation results and the red lines represent experiment results).
Fig. 4
Fig. 4 Line profiles and AFM images of hole arrays at an exposure dose of 1 mJ/cm2 and SD of 10 nm for (a) and 70 nm for (b).
Fig. 5
Fig. 5 Line profiles and AFM images of hole arrays at an exposure dose of 0.78 mJ/cm2 and SD of 70 nm.
Fig. 6
Fig. 6 (a) The relation of exposure dose and spot width (exposure: 1.5, 1.4 and 1.32 mJ/cm2, corresponding to spot width of 114, 84 and 35 nm). (b) Calculation of the dose at the vicinity of PS sphere of 1.25 µm diameter along z axis.

Metrics