Abstract

We demonstrate negative refraction at telecommunication wavelengths through plasmon-photon hybridization on a simple microcavity with metallic mirrors. Instead of using conventional metals, the plasmonic excitations are provided by a heavily doped semiconductor which enables us to tune them into resonance with the infrared photon modes of the cavity. In this way, the dispersion of the resultant hybrid cavity modes can be widely adjusted. In particular, negative dispersion and negative refraction at telecommunication wavelengths on an all-ZnO monolithical cavity are demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of hyperbolic metamaterials at telecommunication wavelength using Ga-doped ZnO

Sascha Kalusniak, Laura Orphal, and Sergey Sadofev
Opt. Express 23(25) 32555-32560 (2015)

Engineering plasmon dispersion relations: hybrid nanoparticle chain -substrate plasmon polaritons

Paul J. Compaijen, Victor A. Malyshev, and Jasper Knoester
Opt. Express 23(3) 2280-2292 (2015)

Negative refraction without negative index in metallic photonic crystals

Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos, and J. B. Pendry
Opt. Express 11(7) 746-754 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  4. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [Crossref]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref] [PubMed]
  6. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  8. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
    [Crossref] [PubMed]
  9. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [Crossref] [PubMed]
  10. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [Crossref] [PubMed]
  11. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
    [Crossref] [PubMed]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
    [Crossref]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  14. S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
    [Crossref]
  15. S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
    [Crossref]
  16. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  17. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  18. H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
    [Crossref]
  19. D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
    [Crossref]
  20. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  21. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
    [Crossref] [PubMed]
  22. P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137(1-3), 41–45 (1997).
    [Crossref]
  23. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  24. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
    [Crossref]
  25. M. Litinskaya and V. M. Agranovich, “Polariton trap in microcavities with metallic mirrors,” J. Phys. Condens. Matter 24(1), 015302 (2012).
    [Crossref] [PubMed]
  26. S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
    [Crossref]
  27. J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
    [Crossref] [PubMed]
  28. M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
    [Crossref]
  29. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [Crossref] [PubMed]
  30. S. Kalusniak, S. Sadofev, and F. Henneberger, “ZnO as a tunable metal: new types of surface plasmon polaritons,” Phys. Rev. Lett. 112(13), 137401 (2014).
    [Crossref] [PubMed]
  31. Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
    [Crossref]
  32. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  33. T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
    [Crossref] [PubMed]
  34. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  35. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

2015 (1)

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

2014 (2)

S. Kalusniak, S. Sadofev, and F. Henneberger, “ZnO as a tunable metal: new types of surface plasmon polaritons,” Phys. Rev. Lett. 112(13), 137401 (2014).
[Crossref] [PubMed]

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

2013 (4)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

2012 (2)

M. Litinskaya and V. M. Agranovich, “Polariton trap in microcavities with metallic mirrors,” J. Phys. Condens. Matter 24(1), 015302 (2012).
[Crossref] [PubMed]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

2011 (2)

2009 (1)

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

2007 (6)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[Crossref] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

2005 (3)

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

2003 (1)

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
[Crossref]

1997 (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137(1-3), 41–45 (1997).
[Crossref]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Agranovich, V. M.

M. Litinskaya and V. M. Agranovich, “Polariton trap in microcavities with metallic mirrors,” J. Phys. Condens. Matter 24(1), 015302 (2012).
[Crossref] [PubMed]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Boltasseva, A.

Bradley, M. S.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[Crossref] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Bulovic, V.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[Crossref] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Dolling, G.

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Fujii, M.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Fujimura, T.

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Glembocki, O. J.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hamm, J. M.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Hayashi, S.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Henneberger, F.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

S. Kalusniak, S. Sadofev, and F. Henneberger, “ZnO as a tunable metal: new types of surface plasmon polaritons,” Phys. Rev. Lett. 112(13), 137401 (2014).
[Crossref] [PubMed]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Hess, O.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Hirata, K.

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
[Crossref]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Inoue, T.

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ishigaki, Y.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Kalusniak, S.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

S. Kalusniak, S. Sadofev, and F. Henneberger, “ZnO as a tunable metal: new types of surface plasmon polaritons,” Phys. Rev. Lett. 112(13), 137401 (2014).
[Crossref] [PubMed]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Kim, H.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

Kim, J.

Kirmse, H.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

Laude, V.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137(1-3), 41–45 (1997).
[Crossref]

Leedy, K. D.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

Litinskaya, M.

M. Litinskaya and V. M. Agranovich, “Polariton trap in microcavities with metallic mirrors,” J. Phys. Condens. Matter 24(1), 015302 (2012).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Liu, Z.

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Look, D. C.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Naik, G.

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nurmikko, A.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Obara, Y.

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Oda, M.

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Osofsky, M.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

Page, A. F.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
[Crossref]

Pickering, T.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Pile, D. F. P.

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Piqué, A.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Prokes, S. M.

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
[Crossref]

Sadofev, S.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

S. Kalusniak, S. Sadofev, and F. Henneberger, “ZnO as a tunable metal: new types of surface plasmon polaritons,” Phys. Rev. Lett. 112(13), 137401 (2014).
[Crossref] [PubMed]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Schäfer, P.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Song, J. H.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
[Crossref]

Sun, C.

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Tani, T.

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Tischler, J. R.

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

Tournois, P.

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137(1-3), 41–45 (1997).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

Wu, D.

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Wuestner, S.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

Zhang, X.

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Appl. Phys. Lett. (3)

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

H. Kim, M. Osofsky, S. M. Prokes, O. J. Glembocki, and A. Piqué, “Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths,” Appl. Phys. Lett. 102(17), 171103 (2013).
[Crossref]

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

IEEE Trans. Microw. Technol. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Technol. 47(11), 2075–2084 (1999).
[Crossref]

J. Phys. Condens. Matter (1)

M. Litinskaya and V. M. Agranovich, “Polariton trap in microcavities with metallic mirrors,” J. Phys. Condens. Matter 24(1), 015302 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Opt. Commun. (1)

P. Tournois and V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137(1-3), 41–45 (1997).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. B (3)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007).
[Crossref]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities,” Phys. Rev. B 86(4), 045408 (2012).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B Condens. Matter 44(24), 13556–13572 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[Crossref] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. R. Tischler, M. S. Bradley, V. Bulović, J. H. Song, and A. Nurmikko, “Strong coupling in a microcavity LED,” Phys. Rev. Lett. 95(3), 036401 (2005).
[Crossref] [PubMed]

S. Kalusniak, S. Sadofev, and F. Henneberger, “ZnO as a tunable metal: new types of surface plasmon polaritons,” Phys. Rev. Lett. 112(13), 137401 (2014).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

Phys. Status Solidi, C Conf. Crit. Rev. (1)

M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, “Strong exciton-photon coupling and its polarization dependence in a metal-mirror microcavity with oriented PIC J-aggregates,” Phys. Status Solidi, C Conf. Crit. Rev. 6(1), 288–291 (2009).
[Crossref]

Proc. SPIE (1)

Y. Liu, D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, “Negative group velocity of surface plasmons on thin metallic films,” Proc. SPIE 6323, 63231M (2006).
[Crossref]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Science (6)

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematics of the dispersion relations (frequency ω versus in-plane wave vector k) of the isolated excitations under study: SPP of an air/metal interface and photon mode of an air-filled microcavity. The surface plasmon frequency is given by ωsp = ωp/(1 + εB)1/2 where ωp is the plasma frequencies of the Drude metal with a background permittivity εB. The frequency of the photon mode at k = 0 for a cavity with length L (and constant reflectivity) is ωph = πc/L. Dashed line: ω = ck (c: light velocity in air).
Fig. 2
Fig. 2 Free-space reflection spectra of the air-filled microcavity. a) Design of the cavity. b) Air/ZnOGa SPP dispersion of the individual mirrors. Dots: Experimental ATR minima in TM polarization. Full line: Calculated dispersion relation (ħωp = 1.48 eV, εB = 3.7, Drude damping: γ = 0.11 eV). c) Experimental spectra. d) Transfer matrix calculations. Upper panels: TM polarization. Lower panels: TE polarization. The angle of incidence changes for all curves from θ = 14 – 54° (bottom to top). The cavity length is denoted above the figures. Dotted lines are to guide the eye. The spectra are vertically shifted for better visibility.
Fig. 3
Fig. 3 Coupled modes of the air cavity. a)-c) Dispersion relations for the cavity lengths of Fig. 2 (L = 2550, 670, 410 nm). Blue rectangles: Experimental minima in TE. Red circles: Experimental minima in TM. Full curves: Calculated from Eq. (1). Red: TM polarization. Blue: TE polarization. Dashed black curve: SPP dispersion of the solitary mirrors. Dotted: photon line. Note that the modes in c) appear at frequencies above ħωsp = 0.68 eV but only slightly below ħωcr = 0.77 eV of the ZnGaO mirrors. d) Damping of the modes for L = 410 nm shown in c). Circles denote positions where the dispersion is experimentally verified.
Fig. 4
Fig. 4 Coupled modes of the all-ZnO cavity. a) Cavity design b) Dispersion relations. Rectangles: Experimental FSR minima in TE. Circles: Experimental FSR and ATR minima in TM. Note that the modes appear at frequencies above ħωsp = ħωp/(2εB)1/2 = 0.72 eV but significantly below ħωcr = 1 eV of the ZnGaO mirrors. Full lines: Calculated from Eq. (1) with Drude-parameters ħωp = 1.95 eV and γ = 0.11 eV. Red line: TM polarization. Blue line: TE polarization. Dotted: Photon line. Inset: Group velocity deduced from the dispersion relation in TM polarization. c) Refraction law derived from Eq. (2). Inset: The negative refraction refocuses beams behind the sample. d) Verification of negative refraction at an angle of 55°. Top: Schematics of the experiment in which the unpolarized transmitted beam is partly blocked by a razor blade. In the case of negative refraction, the beam is displaced away from the blade resulting in an increased signal whereas the beam is shifted behind the blade in the case of positive refraction. Main graph: Relative transmittance (ratio of partly blocked to full transmitted beam). Red line: The experimental configuration is as schematically shown. Black line: Control experiment in which the beam is blocked from the opposite direction. Red, dashed line: Transmission recorded in TM. Blue, dashed line: Transmission recorded in TE.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

r M 2 ( ω,k )exp(2iL n C 2 ω 2 / c 2 k 2 )=1
tan θ B = S x / S z .
ε(ω)= ε B ω p 2 ω(ω+iγ)
r TE = q C q M q C + q M and r TM = β M β C β M + β C
q C (ω,k)= ( (ω/c) 2 n C 2 k 2 ) 1/2 q M (ω,k)= ( (ω/c) 2 ε(ω) k 2 ) 1/2 β C (ω,k)= n C 2 / q C (ω,k) β M (ω,k)=ε( ω )/ q M (ω,k).
( TE ): ( q M + q C ) 2 ( q M q C ) 2 exp(2i q C L)=0 ( TM ):  ( β M + β C ) 2 ( β M β C ) 2 exp(2i q C L)=0 
( TE ):  q C + q M tan h ±1 ( i q C L/2 )=0 ( TM ): β C + β M tan h ±1 ( i q C L/2 )=0
S x =Re + k ωε | H y | 2 S z =Re 0 + 1 iωε H y z H y *
H y ( z )={ sinh( i q C z ),   | z |L/2 z | z | sinh( i q C L 2 )exp(- q M (| z |L/2)),  | z |>L/2
ε={ ε C ,  | z |L/2 ε M ,  | z |>L/2
S x = 1 4 Re( k ω ε C )( sinh( q C '' L ) q C '' sin( q C ' L ) q C ' ) + 1 4 q M '' Re( k ω ε M )( cosh( q C '' L )cos( q C ' L ) )
S z = 1 4 Re q C ω ε C ( sin h 2 ( q C '' L ) q C '' +i sin 2 ( q C ' L ) q C ' ) + 1 8 q M '' Re( q M ω ε M )( cosh( q C '' L )cos( q C ' L ) )

Metrics