Abstract

A transient and high sensitivity sensor based on high-Q microcavity is proposed and studied theoretically. There are two ways to realize the transient sensor: monitor the spectrum by fast scanning of probe laser frequency or monitor the transmitted light with fixed laser frequency. For both methods, the non-equilibrium response not only tells the ultrafast environment variance, but also enable higher sensitivity. As examples of application, the transient sensor for nanoparticles adhering and passing by the microcavity is studied. It’s demonstrated that the transient sensor can sense coupling region, external linear variation together with the speed and the size of a nanoparticle. We believe that our researches will open a door to the fast dynamic sensing by microcavity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Sensor based on an integrated optical microcavity

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto
Opt. Lett. 27(7) 512-514 (2002)

Dark mode plasmonic optical microcavity biochemical sensor

Cheng Li, Lei Chen, Euan McLeod, and Judith Su
Photon. Res. 7(8) 939-947 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
    [Crossref]
  2. J.-R. Carrier, M. Boissinot, and C. Nì. Allen, “Dielectric resonating microspheres for biosensing: an optical approach to a biological problem,” Am. J. Phys. 82, 510–520 (2014).
    [Crossref]
  3. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881–6898 (2014).
    [Crossref] [PubMed]
  4. Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
    [Crossref]
  5. B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref] [PubMed]
  6. F. Sedlmeir, R. Zeltner, G. Leuchs, and H. G. L. Schwefel, “High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22, 30934–30942 (2014).
    [Crossref]
  7. J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J.-Spec. Top. 223, 1917–1935 (2014).
    [Crossref]
  8. M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7, 168–240 (2015).
    [Crossref]
  9. J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2, 1241–1245 (2015).
    [Crossref]
  10. I. A. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5, 70156–70162 (2015).
    [Crossref]
  11. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  12. M. C. Collodo, F. Sedlmeir, B. Sprenger, S. Svitlov, L. J. Wang, and H. G. L. Schwefel, “Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser,” Opt. Express 22, 19277–19283 (2014).
    [Crossref] [PubMed]
  13. P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  14. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  15. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref] [PubMed]
  16. C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
    [Crossref] [PubMed]
  17. H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
    [Crossref] [PubMed]
  18. R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. N. Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett.106 (2015).
    [Crossref]
  19. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  20. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).
  21. N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
    [Crossref]
  22. R. Zeltner, F. Sedlmeir, G. Leuchs, and H. G. L. Schwefel, “Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity,” Eur. Phys. J.-Spec. Top. 223, 1989–1994 (2014).
    [Crossref]
  23. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
    [Crossref] [PubMed]
  24. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
    [Crossref] [PubMed]
  25. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
    [Crossref] [PubMed]
  26. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19, 5753–5759 (2011).
    [Crossref] [PubMed]
  27. P. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
    [Crossref] [PubMed]
  28. T. Ioppolo and M. V. Oetuegen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. 24, 2721–2726 (2007).
    [Crossref]
  29. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
    [Crossref] [PubMed]
  30. L. Stern, I. Goykhman, B. Desiatov, and U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
    [Crossref] [PubMed]
  31. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  32. S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
    [Crossref]
  33. C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, and G. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
    [Crossref]
  34. A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
    [PubMed]
  35. S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
    [Crossref] [PubMed]
  36. B. Wang, T. Siahaan, M. A. Dündar, R. Nötzel, M. J. van der Hoek, S. He, and R. W. van der Heijden, “Photonic crystal cavity on optical fiber facet for refractive index sensing,” Opt. Lett. 37, 833–835 (2012).
    [Crossref] [PubMed]
  37. S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19, 15641–15651 (2011).
    [Crossref] [PubMed]
  38. J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
    [Crossref]
  39. C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
    [Crossref]
  40. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999).
    [Crossref]
  41. Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier, and P. Feron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25, 2073–2080 (2008).
    [Crossref]
  42. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980–6990 (2002).
    [Crossref] [PubMed]
  43. J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
    [Crossref]
  44. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
    [Crossref] [PubMed]
  45. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]
  46. Z. K. Ioannidis, P. Radmore, and I. Giles, “Dynamic response of an all-fiber ring resonator,” Opt. Lett. 13, 422–424 (1988).
    [Crossref] [PubMed]

2015 (4)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7, 168–240 (2015).
[Crossref]

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2, 1241–1245 (2015).
[Crossref]

I. A. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5, 70156–70162 (2015).
[Crossref]

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

2014 (13)

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

R. Zeltner, F. Sedlmeir, G. Leuchs, and H. G. L. Schwefel, “Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity,” Eur. Phys. J.-Spec. Top. 223, 1989–1994 (2014).
[Crossref]

P. Wang, M. Ding, G. S. Murugan, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Packaged, high-Q, microsphere-resonator-based add–drop filter,” Opt. Lett. 39, 5208–5211 (2014).
[Crossref] [PubMed]

J.-R. Carrier, M. Boissinot, and C. Nì. Allen, “Dielectric resonating microspheres for biosensing: an optical approach to a biological problem,” Am. J. Phys. 82, 510–520 (2014).
[Crossref]

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881–6898 (2014).
[Crossref] [PubMed]

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

F. Sedlmeir, R. Zeltner, G. Leuchs, and H. G. L. Schwefel, “High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22, 30934–30942 (2014).
[Crossref]

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J.-Spec. Top. 223, 1917–1935 (2014).
[Crossref]

M. C. Collodo, F. Sedlmeir, B. Sprenger, S. Svitlov, L. J. Wang, and H. G. L. Schwefel, “Sub-kHz lasing of a CaF2 whispering gallery mode resonator stabilized fiber ring laser,” Opt. Express 22, 19277–19283 (2014).
[Crossref] [PubMed]

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

2012 (5)

2011 (6)

S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19, 15641–15651 (2011).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, and J.-J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19, 5753–5759 (2011).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

2010 (1)

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

2009 (2)

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, and G. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[Crossref]

2008 (4)

2007 (2)

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Ioppolo and M. V. Oetuegen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. 24, 2721–2726 (2007).
[Crossref]

2006 (1)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2002 (1)

1999 (1)

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

1988 (1)

Allen, C. Nì.

J.-R. Carrier, M. Boissinot, and C. Nì. Allen, “Dielectric resonating microspheres for biosensing: an optical approach to a biological problem,” Am. J. Phys. 82, 510–520 (2014).
[Crossref]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Arazi, L.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Arcizet, O.

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, A. M.

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

Arnold, S.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Bechler, O.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

Bernini, R.

I. A. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5, 70156–70162 (2015).
[Crossref]

Bo, L.

Boissinot, M.

J.-R. Carrier, M. Boissinot, and C. Nì. Allen, “Dielectric resonating microspheres for biosensing: an optical approach to a biological problem,” Am. J. Phys. 82, 510–520 (2014).
[Crossref]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Brambilla, G.

Capasso, F.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Carmon, T.

Carrier, J.-R.

J.-R. Carrier, M. Boissinot, and C. Nì. Allen, “Dielectric resonating microspheres for biosensing: an optical approach to a biological problem,” Am. J. Phys. 82, 510–520 (2014).
[Crossref]

Chen, D.-R.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Chenevier, M.

Chormaic, S. N.

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22, 6881–6898 (2014).
[Crossref] [PubMed]

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J.-Spec. Top. 223, 1917–1935 (2014).
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
[Crossref] [PubMed]

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. N. Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett.106 (2015).
[Crossref]

Clements, W. R.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

Collodo, M. C.

Coppola, S.

Cui, J.

Dayan, B.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

DelHaye, P.

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Desiatov, B.

Dhasmana, N.

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J.-Spec. Top. 223, 1917–1935 (2014).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Diehl, L.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Ding, M.

Dong, C.

Dong, C.-H.

Donlagic, D.

Dumeige, Y.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier, and P. Feron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25, 2073–2080 (2008).
[Crossref]

Dündar, M. A.

Edamura, T.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Fan, X.

N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
[Crossref]

Farrell, G.

Feron, P.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Y. Dumeige, S. Trebaol, L. Ghisa, T. K. N. Nguyen, H. Tavernier, and P. Feron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25, 2073–2080 (2008).
[Crossref]

Ferraro, P.

Finizio, A.

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7, 168–240 (2015).
[Crossref]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Ghisa, L.

Giles, I.

Gong, Q.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

Gorodetsky, M. L.

Goykhman, I.

Grilli, S.

Grimaldi, I. A.

I. A. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5, 70156–70162 (2015).
[Crossref]

Guan, C.

Guendelman, G.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

Guo, G.

Guo, G.-C.

Han, Z.

Han, Z.-F.

Hanumegowda, N.

N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
[Crossref]

He, L.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

He, S.

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Holler, S.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Huang, S. H.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Huet, V.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Ilchenko, V. S.

Ioannidis, Z. K.

Ioppolo, T.

T. Ioppolo and M. V. Oetuegen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. 24, 2721–2726 (2007).
[Crossref]

Ji, Z.

Jing, H.

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Kachanov, A.

Kan, H.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Kaya ozdemir, s.

J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

Keng, D.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref] [PubMed]

Khoshsima, M.

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kippenberg, T.

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kuzyk, M. C.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Le, V. H.

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. N. Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett.106 (2015).
[Crossref]

Le Cren, E.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Leuchs, G.

R. Zeltner, F. Sedlmeir, G. Leuchs, and H. G. L. Schwefel, “Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity,” Eur. Phys. J.-Spec. Top. 223, 1989–1994 (2014).
[Crossref]

F. Sedlmeir, R. Zeltner, G. Leuchs, and H. G. L. Schwefel, “High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22, 30934–30942 (2014).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Levy, U.

Li, B.-B.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

Li, L.

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Liu, J.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Long, G. L.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Lovsky, Y.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

Lü, X.-Y.

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Madugani, R.

R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
[Crossref] [PubMed]

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. N. Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett.106 (2015).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Michely, L.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Monifi, F.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Mortier, M.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Morville, J.

Murugan, G. S.

Nguyen, T. K.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Nguyen, T. K. N.

Nori, F.

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Nötzel, R.

Oetuegen, M. V.

T. Ioppolo and M. V. Oetuegen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. 24, 2721–2726 (2007).
[Crossref]

Öezdemir, S. K.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Özdemir, S.

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Parkins, a. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Patel, B.

N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Peng, B.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Pevec, S.

Pflugl, C.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Radmore, P.

Rasoloniaina, A.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Riordan, J. D.

Romanini, D.

Rosenblum, S.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

Schliesser, A.

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schwefel, H. G. L.

Sedlmeir, F.

Semenova, Y.

Shi, K.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

Shomroni, I.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

Siahaan, T.

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Soltani, S.

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

Sprenger, B.

Stern, L.

Stica, C.

N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
[Crossref]

Su, J.

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2, 1241–1245 (2015).
[Crossref]

Sun, F.-W.

Svitlov, S.

Swaim, J. D.

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7, 168–240 (2015).
[Crossref]

Tavernier, H.

Teraoka, I.

Testa, G.

I. A. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5, 70156–70162 (2015).
[Crossref]

Trebaol, S.

Unterhinninghofen, J.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

van der Heijden, R. W.

van der Hoek, M. J.

Vespini, V.

Vollmer, F.

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7, 168–240 (2015).
[Crossref]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Wang, B.

Wang, H.

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Wang, L.

Wang, L. J.

Wang, P.

Wang, Q. J.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Ward, J.

Ward, J. M.

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J.-Spec. Top. 223, 1917–1935 (2014).
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, and S. N. Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012).
[Crossref] [PubMed]

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. N. Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett.106 (2015).
[Crossref]

White, I.

N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
[Crossref]

Wiersig, J.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Wilken, T.

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wu, Q.

Wu, X.-W.

Xiao, Y.-F.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, and G.-C. Guo, “Taper-microsphere coupling with numerical calculation of coupled-mode theory,” J. Opt. Soc. Am. B 25, 1895–1898 (2008).
[Crossref]

Xiong, J.-J.

Xue, C.-Y.

Yamanishi, M.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Yan, C.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Yan, S.-B.

Yan, Y.-Z.

Yang, L.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

Yang, X.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yang, Y.

Yilmaz, H.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

Yu, N.

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Yu, X.-C.

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

Zeltner, R.

R. Zeltner, F. Sedlmeir, G. Leuchs, and H. G. L. Schwefel, “Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity,” Eur. Phys. J.-Spec. Top. 223, 1989–1994 (2014).
[Crossref]

F. Sedlmeir, R. Zeltner, G. Leuchs, and H. G. L. Schwefel, “High-Q MgF2 whispering gallery mode resonators for refractometric sensing in aqueous environment,” Opt. Express 22, 30934–30942 (2014).
[Crossref]

Zhang, J.

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Zhang, W.-D.

Zhang, Y.-G.

Zhu, J.

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Zou, C.

Zou, C.-L.

ACS Photonics (1)

J. Su, “Label-free single exosome detection using frequency-locked microtoroid optical resonators,” ACS Photonics 2, 1241–1245 (2015).
[Crossref]

Adv. Opt. Photonics (1)

M. R. Foreman, J. D. Swaim, and F. Vollmer, “Whispering gallery mode sensors,” Adv. Opt. Photonics 7, 168–240 (2015).
[Crossref]

Am. J. Phys. (1)

J.-R. Carrier, M. Boissinot, and C. Nì. Allen, “Dielectric resonating microspheres for biosensing: an optical approach to a biological problem,” Am. J. Phys. 82, 510–520 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Zhu, s. Kaya ozdemir, L. He, and L. Yang, “Optothermal spectroscopy of whispering gallery microresonators,” Appl. Phys. Lett. 99, 171101 (2011).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105, 051111 (2014).
[Crossref]

Chin. Opt. Lett. (1)

Eur. Phys. J.-Spec. Top. (2)

R. Zeltner, F. Sedlmeir, G. Leuchs, and H. G. L. Schwefel, “Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity,” Eur. Phys. J.-Spec. Top. 223, 1989–1994 (2014).
[Crossref]

J. M. Ward, N. Dhasmana, and S. N. Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J.-Spec. Top. 223, 1917–1935 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

T. Ioppolo and M. V. Oetuegen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. 24, 2721–2726 (2007).
[Crossref]

J. Opt. Soc. Am. B (3)

Nanophotonics (1)

F. Vollmer and L. Yang, “Review label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1, 267–291 (2012).
[Crossref]

Nat. Commun. (1)

S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, and B. Dayan, “Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators,” Nat. Commun. 6, 6788 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6, 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2009).
[Crossref]

Nature (2)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, a. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

P. DelHaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, “Pt-symmetric phonon laser,” Phys. Rev. Lett. 113, 053604 (2014).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. USA (1)

Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Nat. Acad. Sci. USA 107, 22407–22412 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (4)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008).
[Crossref] [PubMed]

Ş. K. Öezdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. USA 111, E3836–E3844 (2014).
[Crossref]

B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref] [PubMed]

RSC Advances (1)

I. A. Grimaldi, G. Testa, and R. Bernini, “Flow through ring resonator sensing platform,” RSC Advances 5, 70156–70162 (2015).
[Crossref]

Sci. Rep. (1)

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4, 4023 (2014).
[PubMed]

Science (4)

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 453, 1023–1030 (2014).

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012).
[Crossref] [PubMed]

Other (2)

N. Hanumegowda, C. Stica, B. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87 (2005).
[Crossref]

R. Madugani, Y. Yang, J. M. Ward, V. H. Le, and S. N. Chormaic, “Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light,” Appl. Phys. Lett.106 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic illustration of microcavity sensor for nanoparticle detection. A silica microtoroid is coupling with a silica fiber taper, with laser being loaded from one port and transmitted light being collected from the other. (b) Typical quasi-static transmission spectrum of whispering gallery mode, with the laser frequency sweeping speed Vs = 0.001Vc where the character sweeping speed is Vc = 4κ 2. (c) A transient transmission spectrum for fast scanning laser, with Vs = 10Vc . Time normalized with τ = 1 κ .
Fig. 2
Fig. 2 (a) Typical transmission against time of transient sensor at critical coupling, for κi = κe = κ 0 with κ 0 = 3.0MHz. (b) and (c) are diagrams for checking coupling parameters by the values of dip width and depth or the peak width and height. The vertical coordinate is κi 0, and the abscissa is κe 0 in logarithm scale with κ 0. The diagonal dash line denotes critical coupling condition for steady state. Areas under (shade triangle) and upper the diagonal line correspond to over- and under- coupling regimes, respectively.
Fig. 3
Fig. 3 (a) The transmission response based on linear variation of resonance frequency beginning with critical coupling. The peak width (b) and height (c) varied with resonance sweeping speed and elapse time in double logarithm scale.
Fig. 4
Fig. 4 (a) Schematic illustration of the binding nanoparticle sensing, where a particle approaches to the side of cavity and then adhere on it; (b) and (c) the transmissions T(t) for fixed probe laser frequency for different particle traveling speed (v) and sizes (ε). (d)–(f) The features of the transmission versus v and ε.
Fig. 5
Fig. 5 (a) Schematic illustration of the passing-by nanoparticle sensing. The radius of microcavity is R, the aim distance is R′. (b) The transmission T(t) varies with speed. Curves are shifted up for clear show. (c)–(f) are the features: oscillation period, bump width, peak width, and peak height versus nanoparticle size and speed.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d a ( t ) d t = j ω i a ( t ) ( κ i + κ e ) a ( t ) + 2 κ e s in ( t ) .
a ( t ) = 2 κ e S in e j ω in t j ( ω in ω i ) + ( κ i + κ e ) .
ϕ ( t ) = 0 t ω ( t ) d t = ω in t + V s 2 t 2 .
a ( t ) = 2 κ e S in e j ω i t κ t [ τ 1 + j ( ω in ω i ) τ + 0 t e j ϕ ( t ) j ω i t + κ t d t ] .
s out ( t ) = s in ( t ) 2 κ e a ( t )
T ( t ) = | s out ( t ) / s in ( t ) | 2
a ( t ) = 2 κ e S in e j ω i t κ t [ f ( t ) f ( 0 ) + 1 κ + j ( ω in ω i ) ] ,
f ( t ) = j π 2 V s e [ j ( ω in ω i ) + κ ] 2 2 V s erf ( j κ + ω i ω in V s t 2 j V s )
ω ( t ) = ω i ( 1 ε e α ( d 0 v t ) ) .
ω ( t ) = ω i ( 1 ε e α ( R 2 + ( x 0 + v t ) 2 R ) ) .

Metrics